还是我在测量其他东西?
在这段代码中,我有一堆标签(integers
)。每个标签都有一个字符串表示(const char*
或std::string_view
)。在循环堆栈值被转换为相应的字符串值。这些值附加到预先分配的字符串或分配给数组元素。
结果表明,带有 的版本std::string_view
略快于带有 的版本const char*
。
代码:
#include <array>
#include <iostream>
#include <chrono>
#include <stack>
#include <string_view>
using namespace std;
int main()
{
enum Tag : int { TAG_A, TAG_B, TAG_C, TAG_D, TAG_E, TAG_F };
constexpr const char* tag_value[] =
{ "AAA", "BBB", "CCC", "DDD", "EEE", "FFF" };
constexpr std::string_view tag_values[] =
{ "AAA", "BBB", "CCC", "DDD", "EEE", "FFF" };
const size_t iterations = 10000;
std::stack<Tag> stack_tag;
std::string out;
std::chrono::steady_clock::time_point begin;
std::chrono::steady_clock::time_point end;
auto prepareForBecnhmark = [&stack_tag, &out](){
for(size_t i=0; i<iterations; i++)
stack_tag.push(static_cast<Tag>(i%6));
out.clear();
out.reserve(iterations*10);
};
// Append to string
prepareForBecnhmark();
begin = std::chrono::steady_clock::now();
for(size_t i=0; i<iterations; i++) {
out.append(tag_value[stack_tag.top()]);
stack_tag.pop();
}
end = std::chrono::steady_clock::now();
std::cout << out[100] << "append string const char* = " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count() << "[µs]" << std::endl;
prepareForBecnhmark();
begin = std::chrono::steady_clock::now();
for(size_t i=0; i<iterations; i++) {
out.append(tag_values[stack_tag.top()]);
stack_tag.pop();
}
end = std::chrono::steady_clock::now();
std::cout << out[100] << "append string string_view= " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count() << "[µs]" << std::endl;
// Add to array
prepareForBecnhmark();
std::array<const char*, iterations> cca;
begin = std::chrono::steady_clock::now();
for(size_t i=0; i<iterations; i++) {
cca[i] = tag_value[stack_tag.top()];
stack_tag.pop();
}
end = std::chrono::steady_clock::now();
std::cout << "fill array const char* = " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count() << "[µs]" << std::endl;
prepareForBecnhmark();
std::array<std::string_view, iterations> ccsv;
begin = std::chrono::steady_clock::now();
for(size_t i=0; i<iterations; i++) {
ccsv[i] = tag_values[stack_tag.top()];
stack_tag.pop();
}
end = std::chrono::steady_clock::now();
std::cout << "fill array string_view = " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count() << "[µs]" << std::endl;
std::cout << ccsv[ccsv.size()-1] << cca[cca.size()-1] << std::endl;
return 0;
}
我的机器上的结果是:
Aappend string const char* = 97[µs]
Aappend string string_view= 72[µs]
fill array const char* = 35[µs]
fill array string_view = 18[µs]
Godbolt 编译器浏览器网址:https ://godbolt.org/z/SMrevx
UPD:更准确的基准测试后的结果(500 次运行 300000 次迭代):
Caverage append string const char* = 2636[µs]
Caverage append string string_view= 2096[µs]
average fill array const char* = 526[µs]
average fill array string_view = 568[µs]
神螺栓网址: https ://godbolt.org/z/aU7zL_
所以在第二种情况下const char*
比预期的更快。答案中解释了第一种情况。