0

蟒蛇:3.6.9

TensorFlow:1.15.0

尽管在 SO 上看到了类似问题的答案,但我一直无法检测和解决代码中的错误。所以我来这里寻求你的帮助。

我正在 Iris 数据集上训练分类器,但出现以下错误:

TypeError:预期单个张量时的张量列表

但是,在此错误发生之前,我在堆栈跟踪中看到另一个错误:

ValueError: Tensor("IteratorGetNext:4", shape=(10,), dtype=string)

其中 10 是批量大小。


相关代码:

def input_data(features, labels, batch_size=1, epochs=None, shuffle=False):
    # Create dictionaries of features and labels
    features = {str(key):np.array(value) for key,value in dict(features).items()}
    labels = {str(labels.name):np.array(labels.values)}

    dataset = tf.data.Dataset.from_tensor_slices((features, labels))

    # `drop_remainder` discards last batch in the epoch if its size is less than `batch_size`
    dataset.batch(batch_size, drop_remainder=True).repeat(epochs)
    if shuffle:
        dataset.shuffle(buffer_size=100)

    features, labels = dataset.make_one_shot_iterator().get_next()
    return features, labels


training_input_fn = lambda: input_data(train_dataset_features, train_dataset_labels,
                                        batch_size=10, epochs=100, shuffle=True)
linear_classifier.train(input_fn=training_input_fn, steps=100)

堆栈跟踪:

INFO:tensorflow:Calling model_fn.

---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
    323   try:
--> 324     fn(values)
    325   except ValueError as e:

20 frames

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/tensor_util.py in _check_not_tensor(values)
    275 def _check_not_tensor(values):
--> 276   _ = [_check_failed(v) for v in nest.flatten(values)
    277        if isinstance(v, ops.Tensor)]

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/tensor_util.py in <listcomp>(.0)
    276   _ = [_check_failed(v) for v in nest.flatten(values)
--> 277        if isinstance(v, ops.Tensor)]
    278 # pylint: enable=invalid-name

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/tensor_util.py in _check_failed(v)
    247   # it is safe to use here.
--> 248   raise ValueError(v)
    249 

ValueError: Tensor("IteratorGetNext:4", shape=(10,), dtype=string, device=/device:CPU:0)


During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)

<ipython-input-76-4dd60e9636ae> in <module>()
      1 linear_classifier.train(
      2     input_fn = training_input_fn,
----> 3     steps = 100
      4 )

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in train(self, input_fn, hooks, steps, max_steps, saving_listeners)
    368 
    369       saving_listeners = _check_listeners_type(saving_listeners)
--> 370       loss = self._train_model(input_fn, hooks, saving_listeners)
    371       logging.info('Loss for final step: %s.', loss)
    372       return self

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _train_model(self, input_fn, hooks, saving_listeners)
   1159       return self._train_model_distributed(input_fn, hooks, saving_listeners)
   1160     else:
-> 1161       return self._train_model_default(input_fn, hooks, saving_listeners)
   1162 
   1163   def _train_model_default(self, input_fn, hooks, saving_listeners):

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _train_model_default(self, input_fn, hooks, saving_listeners)
   1189       worker_hooks.extend(input_hooks)
   1190       estimator_spec = self._call_model_fn(
-> 1191           features, labels, ModeKeys.TRAIN, self.config)
   1192       global_step_tensor = training_util.get_global_step(g)
   1193       return self._train_with_estimator_spec(estimator_spec, worker_hooks,

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/estimator.py in _call_model_fn(self, features, labels, mode, config)
   1147 
   1148     logging.info('Calling model_fn.')
-> 1149     model_fn_results = self._model_fn(features=features, **kwargs)
   1150     logging.info('Done calling model_fn.')
   1151 

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/canned/linear.py in _model_fn(features, labels, mode, config)
    989           partitioner=partitioner,
    990           config=config,
--> 991           sparse_combiner=sparse_combiner)
    992 
    993     super(LinearClassifier, self).__init__(

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/canned/linear.py in _linear_model_fn(features, labels, mode, head, feature_columns, optimizer, partitioner, config, sparse_combiner)
    753           labels=labels,
    754           optimizer=optimizer,
--> 755           logits=logits)
    756 
    757 

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/canned/head.py in create_estimator_spec(self, features, mode, logits, labels, optimizer, train_op_fn, regularization_losses)
    239           self._create_tpu_estimator_spec(
    240               features, mode, logits, labels, optimizer, train_op_fn,
--> 241               regularization_losses))
    242       return tpu_estimator_spec.as_estimator_spec()
    243     except NotImplementedError:

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/canned/head.py in _create_tpu_estimator_spec(self, features, mode, logits, labels, optimizer, train_op_fn, regularization_losses)
    894 
    895       training_loss, unreduced_loss, weights, label_ids = self.create_loss(
--> 896           features=features, mode=mode, logits=logits, labels=labels)
    897       if regularization_losses:
    898         regularization_loss = math_ops.add_n(regularization_losses)

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/canned/head.py in create_loss(***failed resolving arguments***)
    800     logits = ops.convert_to_tensor(logits)
    801     labels = _check_dense_labels_match_logits_and_reshape(
--> 802         labels=labels, logits=logits, expected_labels_dimension=1)
    803     label_ids = self._label_ids(labels)
    804     if self._loss_fn:

/usr/local/lib/python3.6/dist-packages/tensorflow_estimator/python/estimator/canned/head.py in _check_dense_labels_match_logits_and_reshape(labels, logits, expected_labels_dimension)
    305         'returns labels.')
    306   with ops.name_scope(None, 'labels', (labels, logits)) as scope:
--> 307     labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
    308     if isinstance(labels, sparse_tensor.SparseTensor):
    309       raise ValueError(

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/sparse_tensor.py in convert_to_tensor_or_sparse_tensor(value, dtype, name)
    412                          (dtype.name, value.dtype.name))
    413     return value
--> 414   return ops.internal_convert_to_tensor(value, dtype=dtype, name=name)
    415 
    416 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accepted_result_types)
   1295 
   1296     if ret is None:
-> 1297       ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
   1298 
   1299     if ret is NotImplemented:

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
    284                                          as_ref=False):
    285   _ = as_ref
--> 286   return constant(v, dtype=dtype, name=name)
    287 
    288 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/constant_op.py in constant(value, dtype, shape, name)
    225   """
    226   return _constant_impl(value, dtype, shape, name, verify_shape=False,
--> 227                         allow_broadcast=True)
    228 
    229 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/constant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
    263       tensor_util.make_tensor_proto(
    264           value, dtype=dtype, shape=shape, verify_shape=verify_shape,
--> 265           allow_broadcast=allow_broadcast))
    266   dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
    267   const_tensor = g.create_op(

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape, allow_broadcast)
    447       nparray = np.empty(shape, dtype=np_dt)
    448     else:
--> 449       _AssertCompatible(values, dtype)
    450       nparray = np.array(values, dtype=np_dt)
    451       # check to them.

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/tensor_util.py in _AssertCompatible(values, dtype)
    326     [mismatch] = e.args
    327     if dtype is None:
--> 328       raise TypeError("List of Tensors when single Tensor expected")
    329     else:
    330       raise TypeError("Expected %s, got %s of type '%s' instead." %

TypeError: List of Tensors when single Tensor expected

字典的值features以及labels在它们被传递到之前tf.data.Dataset.from_tensor_slices()

# features
{'0': array([7.2, 6. , 4.3, 5.7, 4.7, 7. , 5. , 5.4, 5.8, 5.6, 4.6, 6.4, 4.9,
       6.2, 4.9, 5. , 5. , 6.9, 4.8, 6.1, 5. , 5.3, 6.3, 6.7, 6.1, 5.7,
       4.4, 5.8, 4.6, 7.9, 4.5, 6.2, 7.7, 5.5, 6. , 6.3, 5.1, 7.3, 5.2,
       6.2, 7.2, 4.8, 5.2, 6.6, 6.3, 5.6, 5. , 7.7, 6.7, 6.9, 5.5, 6.5,
       6.7, 6.9, 5.1, 6. , 5.5, 6.1, 5.7, 5.4, 5.1, 6.7, 4.6, 6.8, 5.1,
       4.9, 6.1, 6.3, 6.1, 7.4, 4.8, 5.1, 5.7, 6.7, 6.8, 6. , 6.2, 6.5,
       7.2, 4.7, 5.8, 6.9, 6.7, 6. , 6.1, 7.6, 4.4, 6.4, 5.8, 5.7, 5.6,
       6.3, 5.1, 5.1, 6.5, 6.4, 6.3, 5.8, 6.3, 5.8, 5.2, 6.5, 5.5, 4.9,
       4.4]), '1': array([3.6, 2.7, 3. , 3. , 3.2, 3.2, 3.4, 3.9, 2.7, 3. , 3.6, 3.1, 2.4,
       3.4, 2.5, 3. , 3.2, 3.1, 3.1, 3. , 3.5, 3.7, 2.5, 3.1, 2.8, 3.8,
       2.9, 2.7, 3.4, 3.8, 2.3, 2.8, 3. , 3.5, 2.2, 2.5, 3.8, 2.9, 2.7,
       2.9, 3.2, 3.4, 3.4, 2.9, 2.7, 2.5, 2. , 2.6, 2.5, 3.2, 2.4, 3. ,
       3.3, 3.1, 2.5, 3. , 2.3, 3. , 2.5, 3.4, 3.5, 3.1, 3.2, 3.2, 3.8,
       3.1, 2.9, 2.9, 2.6, 2.8, 3. , 3.8, 2.9, 3. , 3. , 2.2, 2.2, 3.2,
       3. , 3.2, 2.7, 3.1, 3. , 3.4, 2.8, 3. , 3. , 2.9, 2.8, 4.4, 2.7,
       3.4, 3.4, 3.5, 2.8, 3.2, 3.3, 4. , 2.3, 2.7, 4.1, 3. , 2.6, 3.6,
       3.2]), '2': array([6.1, 5.1, 1.1, 4.2, 1.3, 4.7, 1.6, 1.7, 5.1, 4.5, 1. , 5.5, 3.3,
       5.4, 4.5, 1.6, 1.2, 5.4, 1.6, 4.9, 1.3, 1.5, 4.9, 5.6, 4. , 1.7,
       1.4, 5.1, 1.4, 6.4, 1.3, 4.8, 6.1, 1.3, 5. , 5. , 1.9, 6.3, 3.9,
       4.3, 6. , 1.9, 1.4, 4.6, 4.9, 3.9, 3.5, 6.9, 5.8, 5.7, 3.7, 5.8,
       5.7, 5.1, 3. , 4.8, 4. , 4.6, 5. , 1.5, 1.4, 4.4, 1.4, 5.9, 1.5,
       1.5, 4.7, 5.6, 5.6, 6.1, 1.4, 1.6, 4.2, 5. , 5.5, 4. , 4.5, 5.1,
       5.8, 1.6, 4.1, 4.9, 5.2, 4.5, 4.7, 6.6, 1.3, 4.3, 5.1, 1.5, 4.2,
       5.6, 1.5, 1.4, 4.6, 5.3, 6. , 1.2, 4.4, 3.9, 1.5, 5.5, 4.4, 1.4,
       1.3]), '3': array([2.5, 1.6, 0.1, 1.2, 0.2, 1.4, 0.4, 0.4, 1.9, 1.5, 0.2, 1.8, 1. ,
       2.3, 1.7, 0.2, 0.2, 2.1, 0.2, 1.8, 0.3, 0.2, 1.5, 2.4, 1.3, 0.3,
       0.2, 1.9, 0.3, 2. , 0.3, 1.8, 2.3, 0.2, 1.5, 1.9, 0.4, 1.8, 1.4,
       1.3, 1.8, 0.2, 0.2, 1.3, 1.8, 1.1, 1. , 2.3, 1.8, 2.3, 1. , 2.2,
       2.1, 2.3, 1.1, 1.8, 1.3, 1.4, 2. , 0.4, 0.3, 1.4, 0.2, 2.3, 0.3,
       0.2, 1.4, 1.8, 1.4, 1.9, 0.3, 0.2, 1.3, 1.7, 2.1, 1. , 1.5, 2. ,
       1.6, 0.2, 1. , 1.5, 2.3, 1.6, 1.2, 2.1, 0.2, 1.3, 2.4, 0.4, 1.3,
       2.4, 0.2, 0.2, 1.5, 2.3, 2.5, 0.2, 1.3, 1.2, 0.1, 1.8, 1.2, 0.1,
       0.2])}

# labels
{'4': array(['Iris-virginica', 'Iris-versicolor', 'Iris-setosa',
       'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor', 'Iris-setosa',
       'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-setosa',
       'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
       'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica',
       'Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
       'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
       'Iris-setosa', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa',
       'Iris-virginica', 'Iris-setosa', 'Iris-virginica',
       'Iris-virginica', 'Iris-setosa', 'Iris-virginica',
       'Iris-virginica', 'Iris-setosa', 'Iris-virginica',
       'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
       'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica',
       'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
       'Iris-virginica', 'Iris-virginica', 'Iris-versicolor',
       'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
       'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
       'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
       'Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa',
       'Iris-setosa', 'Iris-versicolor', 'Iris-virginica',
       'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
       'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
       'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
       'Iris-virginica', 'Iris-setosa', 'Iris-versicolor',
       'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
       'Iris-versicolor', 'Iris-virginica', 'Iris-setosa',
       'Iris-versicolor', 'Iris-virginica', 'Iris-setosa',
       'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
       'Iris-versicolor', 'Iris-virginica', 'Iris-virginica',
       'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',
       'Iris-virginica', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa'],
      dtype=object)}
4

1 回答 1

0

正如@GPhilo 对问题的评论所指出的那样

字符串标签不能用于训练。它们必须转换为整数。因此,我们可以将每个类映射到一个整数,并使用新的“数字”标签进行训练。

所以在上述情况下,类可以更改为,

'鸢尾花'-> 0

'鸢尾花'-> 1

'鸢尾花'-> 2

使用 Pandas 在 Python 中对此进行编码的一种方法是:

# 'string_labels' are the labels in string format 
# provied in a list-like structure (eg. pd.Series)
numerical_labels = pd.Categorical(string_labels).codes

# the above 'numerical_labels' is an array of dtype 'int8'
# to convert it into pd.Series of dtype 'int32' or 'int64'
numerical_labels = pd.Series(numerical_labels, dtype=np.int64)


于 2020-01-31T14:07:21.307 回答