0

我为该项目准备了一个小型数据集。它给了

ValueError: 层权重形状 (43, 100) 与提供的权重形状 (412457, 400) 不兼容

错误。我认为标记器存在问题。

train_test_split 的 X 和 Y

X = []
sentences = list(titles["title"])
for sen in sentences:
    X.append(preprocess_text(sen))

y = titles['Unnamed: 1']



X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)

分词器在这里

tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(X_train)

X_train = tokenizer.texts_to_sequences(X_train)
X_test = tokenizer.texts_to_sequences(X_test)

vocab_size = len(tokenizer.word_index) + 1 #vocab_size 43

maxlen = 100

X_train = pad_sequences(X_train, padding='post', maxlen=maxlen)
X_test = pad_sequences(X_test, padding='post', maxlen=maxlen)

因此,我的预训练 word2vec 模型具有 (412457, 400) 形状。

from numpy import array
from numpy import asarray
from numpy import zeros

from gensim.models import KeyedVectors
embeddings_dictionary = KeyedVectors.load_word2vec_format('drive/My Drive/trmodel', binary=True)

我使用了我的预训练 word2vec 模型而不是 GloVe。(vocab_size: 43, 100, 来自 embeddings_dictionary.vectors 的权重)

from keras.layers.recurrent import LSTM

model = Sequential()
embedding_layer = Embedding(vocab_size, 100, weights=[embeddings_dictionary.vectors], input_length=maxlen , trainable=False)
model.add(embedding_layer)
model.add(LSTM(128))

model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

ValueError: 层权重形状 (43, 100) 与提供的权重形状 (412457, 400) 不兼容

4

1 回答 1

1

如果要使用预训练的权重,则必须将适当的大小参数传递给Embedding层,以便它可以将预训练的权重矩阵分配给嵌入层的权重矩阵。

因此,您必须执行以下操作:

embedding_layer = Embedding(412457, 400, weights=[embeddings_dictionary.vectors], input_length=maxlen , trainable=False)

在训练之前,您必须更改填充以使其符合Embedding图层:

maxlen = 400

X_train = pad_sequences(X_train, padding='post', maxlen=maxlen)
X_test = pad_sequences(X_test, padding='post', maxlen=maxlen)
于 2020-01-21T13:44:27.863 回答