我正在研究一个涉及 STM32H743 核板和使用 16 个 ADC 输入的项目。
显然,这些模拟输入一次使用一次;通过轮询机制读取值并配置下一个输入...配置 ADC 通道,启动 ADC,通过轮询读取值并配置下一个输入...每 1 毫秒 16 次,作为实时行为。
我发现的问题是我无法启动 3 个 ADC 中的任何一个,它卡在 stm32h7xx_hal_adc.h 的这条线上(我认为我错误地配置了时钟或其他类型的东西):
while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
这一行在函数中:
HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc)
这被称为:
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
提前感谢您的帮助,下面提供了源代码。
源代码文件为:
主程序
#include "main.h"
#include "hwdrvlib.h"
#include "test.h"
volatile unsigned int systick_count = 0;
static volatile int systick_active = 1;
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
#ifdef CPU_CACHE
/* Enable I-Cache---------------------------------------------------------*/
SCB_EnableICache();
/* Enable D-Cache---------------------------------------------------------*/
SCB_EnableDCache();
#endif
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config(); //Located on hwdrvlid.h y hwdrvlib.c
/* SysTick is 0 at start */
tick = (uint8_t)0;
/* Initialize */
ADC_Init(); /* Initialize ADC peripherals and GPIO ADC inputs as analog */
//Located on hwdrvlid.h y hwdrvlib.c
/* Sample Time: 0.001 */
while (...) { /* Some comparison deleted for readability */
RT_Task(); //Located on Function file
} //End of while
}
hwdrvlib.c(包含配置函数的文件)
ADC_HandleTypeDef hadc1 __attribute__((section(".ramd2")));
ADC_HandleTypeDef hadc2 __attribute__((section(".ramd2")));
ADC_HandleTypeDef hadc3 __attribute__((section(".ramd2")));
void ADC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* ADC Clock Enable */
__HAL_RCC_ADC12_CLK_ENABLE();
__HAL_RCC_ADC3_CLK_ENABLE();
/* ADC Periph interface clock configuration */
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_CLKP);//or PLL2
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/* ADCs GPIO as analog input */
/* System ADC Input number 1 PF9 */
/*##-2- Configure peripheral GPIO ##########################################*/
/* ADC Channel GPIO pin configuration */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/* Initialization of 16 analog inputs, hidden for readability */
/* System ADC Input number 16 PA3 */
/*##-2- Configure peripheral GPIO ##########################################*/
/* ADC Channel GPIO pin configuration */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* ADC1 Config */
hadc1.Instance = ADC1;
if (HAL_ADC_DeInit(&hadc1) != HAL_OK) {
/* ADC1 de-initialization Error */
Error_Handler();
}
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_16B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1; /* Vector Support */
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.NbrOfDiscConversion = 1;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK) {
Error_Handler();
}
/* The same for ADC2 and ADC3 using hadc2 and hadc3 */
}
void ADC_Input_Select(ADC_HandleTypeDef *hadc,uint32_t Channel)
{
static ADC_ChannelConfTypeDef sConfig = { 0 };
/* Configure Regular Channel */
sConfig.Channel = Channel;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_387CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(hadc, &sConfig) != HAL_OK) {
Error_Handler();
}
}
/**
* @brief System Clock Configuration
* @retval None
*
*
*
* Configure 480 MHz CPU Clock, 240 MHz APB1 and APB2 Clock
* flash latency 4
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = { 0 };
RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 };
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = { 0 };
/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/* The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltage scaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
while (!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {
}
__HAL_RCC_SYSCFG_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);
while (!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {
}
__HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSI);//HSE
/* a 480 MHz config */
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);
while (!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {
}
/** Initializes the CPU, AHB and APB busses clocks
*/
#ifdef USB_VCP_SETUP
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48 |
RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 60;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
#else
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 60;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
#endif
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/* End of old 480 MHz config */
/** Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) {
Error_Handler();
}
/* USB CLK Initialization if needed */
#ifdef USB_VCP_SETUP
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USB;
PeriphClkInitStruct.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;//PLL
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) {
Error_Handler();
}
/** Enable USB Voltage detector
*/
HAL_PWREx_EnableUSBVoltageDetector();
#endif
}
FUNCTION FILE(包含要执行的函数的函数,用于读取模拟输入数据)
void RT_Task(void)
{
/* ADC3-IN2 PF9 */
ADC_Input_Select(&hadc3,ADC_CHANNEL_2);
HAL_ADC_Start(&hadc3); /* Execution stucks here :( */
if (HAL_ADC_PollForConversion(&hadc3,1000) != HAL_OK ) {
/* ADC conversion fails */
//Escribir aqui la salida de error
} else {
test2_B.VectorConcatenate[1] = HAL_ADC_GetValue(&hadc3) + 0;
}
/* More ADC reading hidden for readability */
}