如果标题不清楚,我很抱歉,我是python新手,词汇量有限。
我要做的是对 .tif 栅格中的每个波段应用标准偏差拉伸,然后通过使用 GDAL(Python)堆叠这些波段来创建一个新的栅格(.tif)。
我能够创建具有不同波段组合的新假色光栅并保存它们,并且我能够使用 dstack(第一个代码块)在 python 中创建我想要的图像,但我无法将该图像保存为地理校正的 .tif 文件.
因此,要使用 dstack 创建拉伸图像,我的代码如下所示:
import os
import numpy as np
import matplotlib.pyplot as plt
import math
from osgeo import gdal
# code from my prof
def std_stretch_data(data, n=2):
"""Applies an n-standard deviation stretch to data."""
# Get the mean and n standard deviations.
mean, d = data.mean(), data.std() * n
# Calculate new min and max as integers. Make sure the min isn't
# smaller than the real min value, and the max isn't larger than
# the real max value.
new_min = math.floor(max(mean - d, data.min()))
new_max = math.ceil(min(mean + d, data.max()))
# Convert any values smaller than new_min to new_min, and any
# values larger than new_max to new_max.
data = np.clip(data, new_min, new_max)
# Scale the data.
data = (data - data.min()) / (new_max - new_min)
return data
# open the raster
img = gdal.Open(r'/Users/Rebekah/ThesisData/TestImages/OG/OG_1234.tif')
#open the bands
red = img.GetRasterBand(1).ReadAsArray()
green = img.GetRasterBand(2).ReadAsArray()
blue = img.GetRasterBand(3).ReadAsArray()
# create alpha band where a 0 indicates a transparent pixel and 1 is a opaque pixel
# (this is from class and i dont FULLY understand it)
alpha = np.where(red + green + blue ==0, 0, 1).astype(np.byte)
red_stretched = std_stretch_data(red, 1)
green_stretched = std_stretch_data(green, 1)
blue_stretched = std_stretch_data(blue, 1)
data_stretched = np.dstack((red_stretched, green_stretched, blue_stretched, alpha))
plt.imshow(data_stretched)
plt.show()
这给了我一个美丽的形象,我在一个单独的窗口中想要什么。但是该代码中没有任何地方可以分配投影或将其保存为多波段 tif。
所以我把它应用到我用来创建假彩色图像的代码中,但它失败了(下面的代码)。如果我使用 alpha 波段创建 4 波段 tif,则输出为空 tif,如果我创建 3 波段 tif 并省略 alpha 波段,则输出是完全黑色的 tif。
import os
import numpy as np
import matplotlib.pyplot as plt
import math
from osgeo import gdal
#code from my professor
def std_stretch_data(data, n=2):
"""Applies an n-standard deviation stretch to data."""
# Get the mean and n standard deviations.
mean, d = data.mean(), data.std() * n
# Calculate new min and max as integers. Make sure the min isn't
# smaller than the real min value, and the max isn't larger than
# the real max value.
new_min = math.floor(max(mean - d, data.min()))
new_max = math.ceil(min(mean + d, data.max()))
# Convert any values smaller than new_min to new_min, and any
# values larger than new_max to new_max.
data = np.clip(data, new_min, new_max)
# Scale the data.
data = (data - data.min()) / (new_max - new_min)
return data
#open image
img = gdal.Open(r'/Users/Rebekah/ThesisData/TestImages/OG/OG_1234.tif')
# get geotill driver
gtiff_driver = gdal.GetDriverByName('GTiff')
# read in bands
red = img.GetRasterBand(1).ReadAsArray()
green = img.GetRasterBand(2).ReadAsArray()
blue = img.GetRasterBand(3).ReadAsArray()
# create alpha band where a 0 indicates a transparent pixel and 1 is a opaque pixel
# (this is from class and i dont FULLY understand it)
alpha = np.where(red + green + blue ==0, 0, 1).astype(np.byte)
# apply the 1 standard deviation stretch
red_stretched = std_stretch_data(red, 1)
green_stretched = std_stretch_data(green, 1)
blue_stretched = std_stretch_data(blue, 1)
# create empty tif file
NewImg = gtiff_driver.Create('/Users/riemann/ThesisData/TestImages/FCI_tests/1234_devst1.tif', img.RasterXSize, img.RasterYSize, 4, gdal.GDT_Byte)
if NewImg is None:
raise IOerror('could not create new raster')
# set the projection and geo transform of the new raster to be the same as the original
NewImg.SetProjection(img.GetProjection())
NewImg.SetGeoTransform(img.GetGeoTransform())
# write new bands to the new raster
band1 = NewImg.GetRasterBand(1)
band1.WriteArray(red_stretched)
band2 = NewImg.GetRasterBand(2)
band2.WriteArray(green_stretched)
band3= NewImg.GetRasterBand(3)
band3.WriteArray(blue_stretched)
alpha_band = NewImg.GetRasterBand(4)
alpha_band.WriteArray(alpha)
del band1, band2, band3, img, alpha_band
我不完全确定如何从这里开始并创建一个新文件,显示不同波段的拉伸。
该图像只是从 earthexplorer 下载的 4 波段光栅 (NAIP),如果需要,我可以上传用于测试的特定图像,但与其他 NAIP 图像相比,该文件本身并没有什么特别之处。