实际上,您的代码是正确的,并且 Waffle 正确显示了您的数据(在您的绘图内放大以查看正方形...)
但是,要获得所需的输出,您必须使用参数“行”和“列”,它们指定了华夫饼图的尺寸。
nRows=5
countsPerBlock=10 # 1 block = 10 counts
plt.figure(FigureClass=Waffle,
rows=nRows,
columns=int(np.ceil(sum(dic.values())/nRows/countsPerBlock)),
values=dic,
legend={'loc': 'upper left', 'bbox_to_anchor': (1, 1.1)})
plt.show()

请注意,华夫饼在内部应用了一些舍入(请参阅参数rounding_rule
),这就是为什么countsPerBlock
不完全正确的原因,除非您自己缩放数据。要准确再现所需的输出,请使用以下代码:
nRows = 5
countsPerBlock = 10
keys = ['Xemay', 'Xedap', 'Oto', 'Maybay', 'Tauthuy', 'Xelua']
vals = np.array([150, 20, 180, 80, 135, 5])
vals = np.ceil(vals/countsPerBlock)
data = dict(zip(keys, vals))
plt.figure(FigureClass=Waffle,
rows=5,
values=data,
legend={'loc': 'upper left', 'bbox_to_anchor': (1, 1)})
plt.show()

或者,您可以对数据进行规范化,使值的总和为 100。在 5x20 的正方形中,一个正方形将代表 1% 的数据。
# Create a dict of normalized data. There are plenty of
# ways to do this. Here is one approach:
keys = ['Xemay', 'Xedap', 'Oto', 'Maybay', 'Tauthuy', 'Xelua']
vals = np.array([150, 20, 180, 80, 135, 5])
vals = vals/vals.sum()*100
data = dict(zip(keys, vals))
nRows = 5
# ...
