我尝试将我的 Flink 应用程序部署到 AWS Kinesis Data Analytics 中。此应用程序使用 Apache Avro 反序列化/序列化传入消息。我的应用程序在我的本地机器上运行良好,但是当我将它部署到 AWS 时,出现异常(在 CloudWatch Logs 中):Caused by: java.io.InvalidClassException: org.apache.avro.specific.SpecificRecordBase; local class incompatible: stream classdesc serialVersionUID = 4445917349737100331, local class serialVersionUID = -1463700717714793795
日志详细信息:
{
"locationInformation": "org.apache.flink.runtime.taskmanager.Task.transitionState(Task.java:913)",
"logger": "org.apache.flink.runtime.taskmanager.Task",
"message": "Source: Custom Source -> Sink: Unnamed (1/1) (a72ff69f9dc0f9e56d1104ce21456a5d) switched from RUNNING to FAILED.",
"throwableInformation": [
"org.apache.flink.streaming.runtime.tasks.StreamTaskException: Could not instantiate serializer.",
"\tat org.apache.flink.streaming.api.graph.StreamConfig.getTypeSerializerIn1(StreamConfig.java:160)",
"\tat org.apache.flink.streaming.runtime.tasks.OperatorChain.createChainedOperator(OperatorChain.java:380)",
"\tat org.apache.flink.streaming.runtime.tasks.OperatorChain.createOutputCollector(OperatorChain.java:296)",
"\tat org.apache.flink.streaming.runtime.tasks.OperatorChain.<init>(OperatorChain.java:133)",
"\tat org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:275)",
"\tat org.apache.flink.runtime.taskmanager.Task.run(Task.java:714)",
"\tat java.lang.Thread.run(Thread.java:748)",
"Caused by: java.io.InvalidClassException: org.apache.avro.specific.SpecificRecordBase; local class incompatible: stream classdesc serialVersionUID = 4445917349737100331, local class serialVersionUID = -1463700717714793795",
"\tat java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:699)",
"\tat java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1885)",
"\tat java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1751)",
"\tat java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1885)",
"\tat java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1751)",
"\tat java.io.ObjectInputStream.readClass(ObjectInputStream.java:1716)",
"\tat java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1556)",
"\tat java.io.ObjectInputStream.readObject(ObjectInputStream.java:431)",
"\tat org.apache.flink.formats.avro.typeutils.AvroSerializer.readCurrentLayout(AvroSerializer.java:465)",
"\tat org.apache.flink.formats.avro.typeutils.AvroSerializer.readObject(AvroSerializer.java:432)",
"\tat sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)",
"\tat sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)",
"\tat sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)",
"\tat java.lang.reflect.Method.invoke(Method.java:498)",
"\tat java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1170)",
"\tat java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2178)",
"\tat java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2069)",
"\tat java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1573)",
"\tat java.io.ObjectInputStream.readObject(ObjectInputStream.java:431)",
"\tat org.apache.flink.util.InstantiationUtil.deserializeObject(InstantiationUtil.java:566)",
"\tat org.apache.flink.util.InstantiationUtil.deserializeObject(InstantiationUtil.java:552)",
"\tat org.apache.flink.util.InstantiationUtil.deserializeObject(InstantiationUtil.java:540)",
"\tat org.apache.flink.util.InstantiationUtil.readObjectFromConfig(InstantiationUtil.java:501)",
"\tat org.apache.flink.streaming.api.graph.StreamConfig.getTypeSerializerIn1(StreamConfig.java:158)",
"\t... 6 more"
],
"threadName": "Source: Custom Source -> Sink: Unnamed (1/1)",
"applicationARN": "arn:aws:kinesisanalytics:us-east-1:829044228870:application/poc-kda",
"applicationVersionId": "8",
"messageSchemaVersion": "1",
"messageType": "INFO"
}
我使用库版本:
- 阿帕奇 Avro - 1.9.1
- Apache Flink - 1.9.1
- Kinesis 生产者库 - 0.13.1
- AWS Flink - 1.8
注意,如果我使用 Apache Flink - 1.8、1.6,同样的问题
KDA Flink 代码:
public class KinesisExampleKDA {
private static final String REGION = "us-east-1";
public static void main(String[] args) throws Exception {
Properties consumerConfig = new Properties();
consumerConfig.put(AWSConfigConstants.AWS_REGION, REGION);
consumerConfig.put(ConsumerConfigConstants.STREAM_INITIAL_POSITION, "LATEST");
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(50000);
DataStream<EventAttributes> consumerStream = env.addSource(new FlinkKinesisConsumer<>(
"dev-events", new KinesisSerializer(), consumerConfig));
consumerStream
.addSink(getProducer());
env.execute("kinesis-example");
}
private static FlinkKinesisProducer<EventAttributes> getProducer(){
Properties outputProperties = new Properties();
outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, REGION);
outputProperties.setProperty("AggregationEnabled", "false");
FlinkKinesisProducer<EventAttributes> sink = new FlinkKinesisProducer<>(new KinesisSerializer(), outputProperties);
sink.setDefaultStream("dev-result");
sink.setDefaultPartition("0");
return sink;
}
}
class KinesisSerializer implements DeserializationSchema<EventAttributes>, SerializationSchema<EventAttributes> {
@Override
public EventAttributes deserialize(byte[] bytes) throws IOException {
return EventAttributes.fromByteBuffer(ByteBuffer.wrap(bytes));
}
@Override
public boolean isEndOfStream(EventAttributes eventAttributes) {
return false;
}
@Override
public byte[] serialize(EventAttributes eventAttributes) {
try {
return eventAttributes.toByteBuffer().array();
} catch (IOException e) {
e.printStackTrace();
}
return new byte[1];
}
@Override
public TypeInformation<EventAttributes> getProducedType() {
return TypeInformation.of(EventAttributes.class);
}
}
Kinesis生产者代码:
public class KinesisProducer {
private static String streamName = "dev-events";
public static void main(String[] args) throws InterruptedException, JsonMappingException {
AmazonKinesis kinesisClient = getAmazonKinesisClient("us-east-1");
try {
sendData(kinesisClient, streamName);
} catch (IOException e) {
e.printStackTrace();
}
}
private static AmazonKinesis getAmazonKinesisClient(String regionName) {
AmazonKinesisClientBuilder clientBuilder = AmazonKinesisClientBuilder.standard();
clientBuilder.setEndpointConfiguration(
new AwsClientBuilder.EndpointConfiguration("kinesis.us-east-1.amazonaws.com",
regionName));
clientBuilder.withCredentials(DefaultAWSCredentialsProviderChain.getInstance());
clientBuilder.setClientConfiguration(new ClientConfiguration());
return clientBuilder.build();
}
private static void sendData(AmazonKinesis kinesisClient, String streamName) throws IOException {
PutRecordsRequest putRecordsRequest = new PutRecordsRequest();
putRecordsRequest.setStreamName(streamName);
List<PutRecordsRequestEntry> putRecordsRequestEntryList = new ArrayList<>();
for (int i = 0; i < 50; i++) {
PutRecordsRequestEntry putRecordsRequestEntry = new PutRecordsRequestEntry();
EventAttributes eventAttributes = EventAttributes.newBuilder().setName("Jon.Doe").build();
putRecordsRequestEntry.setData(eventAttributes.toByteBuffer());
putRecordsRequestEntry.setPartitionKey(String.format("partitionKey-%d", i));
putRecordsRequestEntryList.add(putRecordsRequestEntry);
}
putRecordsRequest.setRecords(putRecordsRequestEntryList);
PutRecordsResult putRecordsResult = kinesisClient.putRecords(putRecordsRequest);
System.out.println("Put Result" + putRecordsResult);
}
.avdl 格式的 Avro 架构:
@version("0.1.0")
@namespace("com.naya.avro")
protocol UBXEventProtocol{
record EventAttributes{
union{null, string} name=null;
}
}
Avro 自动生成的实体类:
@org.apache.avro.specific.AvroGenerated
public class EventAttributes extends org.apache.avro.specific.SpecificRecordBase implements org.apache.avro.specific.SpecificRecord {
private static final long serialVersionUID = 2780976157169751219L;
public static final org.apache.avro.Schema SCHEMA$ = new org.apache.avro.Schema.Parser().parse("{\"type\":\"record\",\"name\":\"EventAttributes\",\"namespace\":\"com.naya.avro\",\"fields\":[{\"name\":\"name\",\"type\":[\"null\",{\"type\":\"string\",\"avro.java.string\":\"String\"}],\"default\":null}]}");
public static org.apache.avro.Schema getClassSchema() { return SCHEMA$; }
private static SpecificData MODEL$ = new SpecificData();
private static final BinaryMessageEncoder<EventAttributes> ENCODER =
new BinaryMessageEncoder<EventAttributes>(MODEL$, SCHEMA$);
private static final BinaryMessageDecoder<EventAttributes> DECODER =
new BinaryMessageDecoder<EventAttributes>(MODEL$, SCHEMA$);
…
Github 链接:
有人可以添加更多细节吗?为什么它不能在 AWS 上运行?
先感谢您