我正在尝试解决由 Fipy 中的 gmsh 创建的网格中的 Meinhart 模型。但是,我不确定如何添加零通量边界条件。下面,你可以找到我的代码。我想知道这些行是否:
#u.constrain(0, where=mesh.exteriorFaces)
#u.faceGrad.constrain(mesh.faceCenters, where=mesh.exteriorFaces)
应激活以确保零通量边界条件。
我读到:https ://github.com/usnistgov/fipy/issues/674 “FiPy 的边界默认情况下是无通量的”。但是,我不知道它是否也适用于由 gmsh 选项创建的网格。
如果不需要激活或在我的代码中添加额外的行来设置零通量边界条件,它也适用于我有更复杂的网格,例如多边形、圆形或其他不规则形状?
谢谢,
"""
Emacs Editor
This is a temporary script file.
"""
# -*- coding: utf-8 -*-
"""
@author: Irbin B.
"""
'''Solving Meinhart model 2D'''
# 1. Libraries
import fipy as fi # Finite volume method's package
# 2. Building the domain (Gmsh square)
## 2.1. Domain lenght
nx = 100
ny = nx
## 2.2. Gmsh config
mesh = fi.Gmsh2D('''
Side = 100;
CellSize = 1;
Point(1) = {0, 0, 0, CellSize};
Point(2) = {0, Side, 0, CellSize};
Point(3) = {Side, Side, 0, CellSize};
Point(4) = {Side, 0, 0, CellSize};
Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 1};
Line Loop(6) = {1, 2, 3, 4};
Plane Surface(7) = {6};
''' % locals())
## 2.3. Adding initial conditions values (Random)
noise_u = fi.GaussianNoiseVariable(mesh=mesh,
mean=0.5,
variance=0.05).value
noise_v = fi.GaussianNoiseVariable(mesh=mesh,
mean=0.5,
variance=0.05).value
# 3. Zero-Flux boundary conditions
BCs = (fi.FixedFlux(faces=mesh.facesRight, value=0.),
fi.FixedFlux(faces=mesh.facesLeft, value=0.),
fi.FixedFlux(faces=mesh.facesTop, value=0.),
fi.FixedFlux(faces=mesh.facesBottom, value=0.))
# 4. Defining the variables
u = fi.CellVariable(name = "u",
mesh=mesh,
value=0.,
hasOld=True)
u[:] = noise_u
#u.constrain(0, where=mesh.exteriorFaces)
#u.faceGrad.constrain(mesh.faceCenters, where=mesh.exteriorFaces)
v = fi.CellVariable(name = "v",
mesh = mesh,
value = 0.,
hasOld = True)
v[:] = noise_v
#v.constrain(0, where=mesh.exteriorFaces)
#v.faceGrad.constrain(mesh.faceCenters, where=mesh.exteriorFaces)
# 5. Defining the parameters
Da = 1.
Db = 100
alpha = -0.005
beta = 10
# 6. Creating the system of PDEs
equ = fi.TransientTerm(var=u) == fi.DiffusionTerm(coeff=Da, var=u) + u - u**3 - v + alpha
eqv = fi.TransientTerm(var=v) == fi.DiffusionTerm(coeff=Db, var=v) + (u - v) * beta
eqn = (equ & eqv)
# 7. Solving the PDEs and showing the results in figures
timeStepDuration = .1
steps = 100
for step in range(steps):
u.updateOld()
v.updateOld()
eqn.sweep(dt = timeStepDuration)
print(step+1)
if __name__== '__main__':
uviewer = fi.Viewer(vars=u, datamin=0., datamax=.7)
vviewer = fi.Viewer(vars=v, datamin=0., datamax=.7)