1

我在数据框中有一些时间序列数据,以时间为索引。对索引进行排序,数据存储在多个 parquet 文件中,每个文件中有一天的数据。我使用 dask 2.9.1

当我从一个镶木地板文件加载数据时,分区设置正确。

当我从多个文件加载数据时,我没有在生成的 dask 数据框中得到这些定义。

下面的例子说明了这个问题:

import pandas as pd 
import pandas.util.testing as tm
import dask.dataframe as dd

df = tm.makeTimeDataFrame( 48, "H")

df1 = df[:24].sort_index()
df2 = df[24:].sort_index()
dd.from_pandas( df1, npartitions=1 ).to_parquet( "df1d.parq", engine="fastparquet" ) 
dd.from_pandas( df2, npartitions=1 ).to_parquet( "df2d.parq", engine="fastparquet" )
ddf = dd.read_parquet( "df*d.parq", infer_divisions=True, sorted_index=True, engine="fastparquet"  ) 
print(ddf.npartitions, ddf.divisions)

在这里,我得到 2 个分区和(None, None, None)分区

我可以让 dd.read_parquet 将分区设置为实际值吗?


更新

在我的实际数据中,我有一个镶木地板文件 pr day。

这些文件是通过保存数据帧中的数据来创建的,其中时间戳用作索引。索引已排序。每个文件的大小为 100-150MB,当加载到内存时,它使用应用程序 2.5GB 的 RAM,激活索引很重要,因为重新创建索引非常繁重。

我没有设法在 read_parquet 上找到使其在加载时创建除法的参数或引擎组合。

数据文件被命名为“yyyy-mm-dd.parquet”,所以我绑定到从该信息创建部门:

from pathlib import Path
files = list (Path("e:/data").glob("2019-06-*.parquet") )
divisions = [  pd.Timestamp( f.stem) for f in files ] + [ pd.Timestamp( files[-1].stem) + pd.Timedelta(1, unit='D' ) ]
ddf = dd.read_parquet( files )
ddf.divisions = divisions

这没有启用索引的使用,并且在某些情况下它失败了“TypeError:只能将元组(而不是“列表”)连接到元组”

然后我尝试将部门设置为元组 ddf.divisions = tuple(divisions),然后它起作用了。当索引设置正确时,dask 速度非常快


更新 2

更好的方法是单独读取 dask 数据帧,然后将它们连接起来:

from pathlib import Path
import dask.dataframe as dd
files = list (Path("e:/data").glob("2019-06-*.parquet") )
ddfs = [ dd.read_parquet( f ) for f in files ]
ddf = dd.concat(ddfs, axis=0)

以这种方式设置分区,它还解决了随着时间的推移处理添加列的另一个问题。

4

1 回答 1

0

下面我重写了原始问题以使用 concat,这解决了我的问题

import pandas as pd 
import pandas.util.testing as tm
import dask.dataframe as dd

# create two example parquet files
df = tm.makeTimeDataFrame( 48, "H")
df1 = df[:24].sort_index()
df2 = df[24:].sort_index()
dd.from_pandas( df1, npartitions=1 ).to_parquet( "df1d.parq" ) 
dd.from_pandas( df2, npartitions=1 ).to_parquet( "df2d.parq" )

# read the files and concatenate
ddf = dd.concat([dd.read_parquet( d ) for d in ["df1d.parq", "df2d.parq"] ], axis=0)

print(ddf.npartitions, ddf.divisions)

我仍然得到预期的 2 个分区,但现在分区是(Timestamp('2000-01-01 00:00:00'), Timestamp('2000-01-02 00:00:00'), Timestamp('2000-01-02 23:00:00'))

于 2020-01-13T19:41:01.217 回答