我刚刚阅读了 Lean 的文档,并尝试执行3.7。练习,
还没有完成所有练习,但这里是前四个练习(没有经典推理):
变量 pqr : 道具
-- ∧ 和 ∨<br> 的交换性 示例:p ∧ q ↔ q ∧ p := sorry
示例:p ∨ q ↔ q ∨ p := sorry-- ∧ 和 ∨<br> 的结合性 示例:(p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := sorry
示例:(p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := sorry
这是我为前四个练习所做的:
variables p q r : Prop
-- commutativity of ∧ and ∨
example : p ∧ q ↔ q ∧ p :=
iff.intro
(assume h : p ∧ q,
show q ∧ p, from and.intro (and.right h) (and.left h))
(assume h : q ∧ p,
show p ∧ q, from and.intro (and.right h) (and.left h))
example : p ∨ q ↔ q ∨ p :=
iff.intro
(assume h : p ∨ q,
show q ∨ p, from
or.elim h
(assume hp : p,
show q ∨ p, from or.intro_right q hp)
(assume hq : q,
show q ∨ p, from or.intro_left p hq))
(assume h : q ∨ p,
show p ∨ q, from
or.elim h
(assume hq : q,
show p ∨ q, from or.intro_right p hq)
(assume hp : p,
show p ∨ q, from or.intro_left q hp))
-- associativity of ∧ and ∨
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) :=
iff.intro
(assume h: (p ∧ q) ∧ r,
have hpq : p ∧ q, from and.elim_left h,
have hqr : q ∧ r, from and.intro (and.right hpq) (and.right h),
show p ∧ (q ∧ r), from and.intro (and.left hpq) (hqr))
(assume h: p ∧ (q ∧ r),
have hqr : q ∧ r, from and.elim_right h,
have hpq : p ∧ q, from and.intro (and.left h) (and.left hqr),
show (p ∧ q) ∧ r, from and.intro (hpq) (and.right hqr))
example : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) :=
iff.intro
(assume hpqr : (p ∨ q) ∨ r,
show p ∨ (q ∨ r), from or.elim hpqr
(assume hpq : p ∨ q,
show p ∨ (q ∨ r), from or.elim hpq
(assume hp : p,
show p ∨ (q ∨ r), from or.intro_left (q ∨ r) hp)
(assume hq : q,
have hqr : q ∨ r, from or.intro_left r hq,
show p ∨ (q ∨ r), from or.intro_right p hqr))
(assume hr : r,
have hqr : q ∨ r, from or.intro_right q hr,
show p ∨ (q ∨ r), from or.intro_right p hqr))
(assume hpqr : p ∨ (q ∨ r),
show (p ∨ q) ∨ r, from or.elim hpqr
(assume hp : p,
have hpq : (p ∨ q), from or.intro_left q hp,
show (p ∨ q) ∨ r, from or.intro_left r hpq)
(assume hqr : (q ∨ r),
show (p ∨ q) ∨ r, from or.elim hqr
(assume hq : q,
have hpq : (p ∨ q), from or.intro_right p hq,
show (p ∨ q) ∨ r, from or.intro_left r hpq)
(assume hr : r,
show (p ∨ q) ∨ r, from or.intro_right (p ∨ q) hr)))
我认为这是有效的,但它很长,这是我们能做的最好的,还是有更好的方法来用精益编写这些证明,任何建议都将不胜感激。