0

我正在尝试找到一种算法,该算法可以找到给定树的最小总重量。

我得到一棵树和所有节点的权重(每个节点可以有不同的权重)。例如在此图中,每个节点的权重为 1: 具有权重的树

然后给我一组至少两个数字,我们称它们为 X。例如 X:2、3、4、5。每个节点分配一个 X 值,而相邻的两个节点不能有相同的 X 值。结果,每个节点的总权重为 X * weight。将所有节点的总权重相加后,我们就得到了树的总权重。 树结果

目标是找到一种算法,它可以找到 X 值的一个这样的分布,以便我们得到树的最小权重。

任何帮助,将不胜感激。

4

1 回答 1

1

您可以使用自下而上的方法(通过递归),对于每个节点,您计算以该节点为根的子树的最小总权重,对于该节点的每个因子选择(来自X)。

所以如果X有 10 个因子,每个节点将得到 10 个计算权重,每个权重对应一个因子的选择。

当您从一个节点上升到其父节点的一层时,您会收集相同的信息。在查看该父母的一个特定孩子时,取为该孩子计算的两个最小权重(从 10 个)。假设它们分别用于因子i和因子j。然后,如果您计算因子i的父母的总重量,则必须考虑与因子j对应的孩子的体重。在所有其他情况下,您可以采用与因子i对应的那个。

这是用 JavaScript 表达的想法:

class Node {
    constructor(weight, ...children) {
        this.weight = weight;
        this.children = children;
    }
    getMinWeights(factors) {
        // Get the node's own weight for each choice of factor:
        let weights = [];
        for (let i = 0; i < factors.length; i++) {
            weights[i] += factors[i] * this.weight);
        }
        // For each child of this node:
        for (let child of this.children) {
            // Get the min weight corresponding to each factor-choice 
            //    made for the child node
            let childWeights = child.getMinWeights(factors);
            // Get positions (i.e. factor indices) of the 2 smallest results
            let minIndex1 = 0;
            for (let i = 1; i < childWeights.length; i++) {
                if (childWeights[i] < childWeights[minIndex1]) {
                    minIndex1 = i;
                }
            }
            let minIndex2 = minIndex1 > 0 ? 0 : 1;
            for (let i = 0; i < childWeights.length; i++) {
                if (i !== minIndex1 && childWeights[i] < childWeights[minIndex2]) {
                    minIndex2 = i;
                }
            }
            // For each factor choice in this node, determine the best choice 
            //   of factor in the child, and add the corresponding weight 
            //   to the total weight for this node's subtree.
            for (let i = 0; i < childWeights.length; i++) {
                weights[i] += childWeights[i === minIndex1 ? minIndex2 : minIndex1];
            }
        }
        return weights;
    }
}

// Example:
let tree = new Node(1,
    new Node(1), new Node(1), new Node(1,
        new Node(1), new Node(1), new Node(1)
    )
);
let result = tree.getMinWeights([2, 3, 4, 5]);
console.log(Math.min(...result)); // Return the minimum of the values we got back.

因此,该算法的时间复杂度为O(nm),其中n是节点数,m = |X| .

当最大分支因子b已知时,您可以将X剪辑为b+2中最小的一个(因此m = b+2)。无论如何, X可以被裁剪为n 个最小值。

获取 X 的分布

可以扩展上述算法以获得X因子的最佳分布。为此,应为每个节点存储最小权重(每个因子,每个节点)。然后一个新的 DFS 遍历应该找到具有最小权重的索引,并将相应的 X 因子分配给节点。在递归中,该索引应该被排除在分配给直接子代的范围之外。

这是与该扩展相同的代码:

class Node {
    constructor(weight, ...children) {
        this.weight = weight;
        this.children = children;
    }
    getMinWeights(factors) {
        // Get the node's own weight for each choice of factor:
        let weights = [];
        for (let i = 0; i < factors.length; i++) {
            weights[i] += factors[i] * this.weight;
        }
        // For each child of this node:
        for (let child of this.children) {
            // Get the min weight corresponding to each factor-choice 
            //    made for the child node
            let childWeights = child.getMinWeights(factors);
            // Get positions (i.e. factor indices) of the 2 smallest results
            let minIndex1 = 0;
            for (let i = 1; i < childWeights.length; i++) {
                if (childWeights[i] < childWeights[minIndex1]) {
                    minIndex1 = i;
                }
            }
            let minIndex2 = minIndex1 > 0 ? 0 : 1;
            for (let i = 0; i < childWeights.length; i++) {
                if (i !== minIndex1 && childWeights[i] < childWeights[minIndex2]) {
                    minIndex2 = i;
                }
            }
            // For each factor choice in this node, determine the best choice 
            //   of factor in the child, and add the corresponding weight 
            //   to the total weight for this node's subtree.
            for (let i = 0; i < childWeights.length; i++) {
                weights[i] += childWeights[i === minIndex1 ? minIndex2 : minIndex1];
            }
        }
        // Extra: store the weights with the node
        this.weights = weights;
        
        return weights;
    }
    // Extra: method to distribute the X-factors to each node. Must run after method above.
    assignFactors(factors, excludeIndex=-1) {
        if (excludeIndex === -1) this.getMinWeights(factors); // First do this...
        // Get the index of the factor that results in the minimal weight
        let minIndex = excludeIndex === 0 ? 1 : 0;
        for (let i = 1; i < this.weights.length; i++) {
            if (i !== excludeIndex && this.weights[i] < this.weights[minIndex]) {
                minIndex = i;
            }
        }
        // Assign the corresponding factor to this node
        this.factor = factors[minIndex];
        // For each child of this node:
        for (let child of this.children) {
            // recurse, and pass the chosen factor index, so it will not be used
            // for the child:
            child.assignFactors(factors, minIndex);
        }
    }
    toArray() {
        return this.children.length ? [this.factor, this.children.map(child => child.toArray())] : this.factor;
    }
}

// Example:
let tree = new Node(1,
    new Node(1), new Node(1), new Node(1,
        new Node(1), new Node(1), new Node(1)
    )
);
tree.assignFactors([2, 3, 4, 5]);

console.log(JSON.stringify(tree.toArray()));

于 2019-12-14T19:25:02.023 回答