我在使用 Tfidf 应用 K 折交叉验证时遇到问题。它给了我这个错误
ValueError: setting an array element with a sequence.
我见过其他有同样问题的问题,但他们使用的是 train_test_split() 这与 K-fold 有点不同
for train_fold, valid_fold in kf.split(reviews_p1):
vec = TfidfVectorizer(ngram_range=(1,1))
reviews_p1 = vec.fit_transform(reviews_p1)
train_x = [reviews_p1[i] for i in train_fold] # Extract train data with train indices
train_y = [labels_p1[i] for i in train_fold] # Extract train data with train indices
valid_x = [reviews_p1[i] for i in valid_fold] # Extract valid data with cv indices
valid_y = [labels_p1[i] for i in valid_fold] # Extract valid data with cv indices
svc = LinearSVC()
model = svc.fit(X = train_x, y = train_y) # We fit the model with the fold train data
y_pred = model.predict(valid_x)
实际上,我发现问题出在哪里,但我找不到解决方法,基本上,当我们使用 cv/train 索引提取训练数据时,我们会得到一个稀疏矩阵列表
[<1x21185 sparse matrix of type '<class 'numpy.float64'>'
with 54 stored elements in Compressed Sparse Row format>,
<1x21185 sparse matrix of type '<class 'numpy.float64'>'
with 47 stored elements in Compressed Sparse Row format>,
<1x21185 sparse matrix of type '<class 'numpy.float64'>'
with 18 stored elements in Compressed Sparse Row format>, ....]
我尝试在拆分后对数据应用 Tfidf,但由于特征数量不一样,它不起作用。
那么有什么方法可以在不创建稀疏矩阵列表的情况下拆分 K 折数据?