1

我正在尝试根据确定正在迭代的当前列是字母数字、字母还是数字,将列添加到布尔值的数据框中。不幸的是,对于每个布尔测试,每一列都给出了 False。目标是对于给定的列,如何添加另一列来显示给定列中的行是否是字母数字?我不想遍历列中的每一行,因为这非常耗时。我需要这样做,因为可能存在我不知道给定列中将包含什么数据类型的情况。

def add_numeric_alpha_alphanum_tests(dataframe, dataframe_column_names):
    for column_name in dataframe_column_names:
        column_name_is_alphanumeric = column_name + "_is_alphanumeric"
        data_to_test = str(dataframe[column_name].values)
        dataframe[column_name_is_alphanumeric] = np.where(data_to_test.isalnum(), True, False)
        column_name_is_alpha = column_name + "_is_alpha"
        dataframe[column_name_is_alpha] = np.where(data_to_test.isalpha(), True, False)
        column_name_is_digit = column_name + "_is_digit"
        dataframe[column_name_is_digit] = np.where(data_to_test.isdigit(), True, False)
    return dataframe
4

1 回答 1

1

您可以利用applyPandas 中的功能,从而享受效率,例如:

dataframe['column1_is_alphanumeric'] = dataframe['column1'].apply(lambda x: True if str(x).isalnum() else False)
dataframe['column1_is_alpha'] = dataframe['column1'].apply(lambda x: True if str(x).isalpha() else False)
dataframe['column1_is_digit'] = dataframe['column1'].apply(lambda x: True if str(x).isdigit() else False)
于 2019-12-10T18:57:17.287 回答