我花了两天时间尝试使用神经结构化语言来适应我的 CNN 模型我使用 ImageDataGenerator 和 flow_from_directory 当我使用 model.fit_generator 我收到一条错误消息:ValueError:
将输入数据作为数组传递时,不要指定
steps_per_epoch
/steps
参数。请batch_size
改用。
我使用 Keras 2.3.1 和 TensorFlow 2.0 作为后端
这是我的代码的片段:
num_classes = 4
img_rows, img_cols = 224, 224
batch_size = 16
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=30,
width_shift_range=0.3,
height_shift_range=0.3,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_rows, img_cols),
batch_size=batch_size, shuffle=True,
class_mode='categorical')
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_rows, img_cols),
batch_size=batch_size, shuffle=True,
class_mode='categorical')
def vgg():
model1 = Sequential([ ])
return model1
base_model = vgg()
我将从 (x,y) 格式生成的数据改编为字典格式
def convert_training_data_generator():
for x ,y in train_generator:
return {'feature': x, 'label':y}
def convert_testing_data_generator():
for x ,y in validation_generator:
return {'feature': x, 'label': y}
adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05)
model = nsl.keras.AdversarialRegularization(base_model, adv_config=adv_config)
train= convert_training_data_generator()
test= convert_testing_data_generator()
history = model.fit_generator(train,
steps_per_epoch= nb_train_samples // batch_size,
epochs = epochs,
callbacks = callbacks,
validation_data = test,
validation_steps = nb_validation_samples // batch_size)