我已经使用 Tensorflow 对象检测 APIfaster_rcnn_inception_resnet_v2_atrous_coco
在大约 10 个类上训练了一个对象检测模型。当我运行model_main.py
文件来评估模型时,它似乎只给出了所有 10 个类的平均平均精度 (AP) 和平均召回率 (AR),如下所示:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.479
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.395
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.600
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.407
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.333
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.358
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.544
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.548
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.600
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.545
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.551
但是,如果我只想评估 1 个特定类的性能,而不是所有 30 个检测到的类,我该怎么办?