首先让我说这不是其他类似问题的重复,在这些问题中人们倾向于更密切地管理工人群体。
在使用 multiprocessing.Pool.imap 时,我一直在努力解决我的代码引发的以下异常:
File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/process.py", line 267, in _bootstrap
self.run()
File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/pool.py", line 122, in worker
put((job, i, (False, wrapped)))
File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/queues.py", line 390, in put
return send(obj)
IOError: [Errno 32] Broken pipe
这在执行以下主程序时出现在各个点:
pool = mp.Pool(num_workers)
# Calculate a good chunksize (based on implementation of pool.map)
chunksize, extra = divmod(lengthData, 4 * num_workers)
if extra:
chunksize += 1
func = partial(pdf_to_txt, input_folder=inputFolder, junk_folder=imageJunkFolder, out_folder=outTextFolder,
log_name=log_name, log_folder=None,
empty_log=False, input_folder_iterator=None,
print_console=True)
flag_vec = pool.imap(func, (dataFrame['testo accordo'][i] for i in range(lengthData)), chunksize)
dataFrame['flags_conversion'] = pd.Series(flag_vec)
dataFrame.to_excel("{0}logs/{1}.xlsx".format(outTextFolder, nameOut))
pool.close()
pool.join()
仅供参考,部分函数采用非 OCR PDF 文件,将它们拆分为每个页面的图像,并使用 pytesseract 运行 OCR。
我在以下机器上运行代码:
This is a physical machine (PowerEdge R930) running RedHat 7.7 (Linux 3.10.0).
Processor: Intel(R) Xeon(R) CPU E7-8880 v3 @ 2.30GHz (x144)
Memory: 1.48 TiB
Swap: 7.81 GiB
Uptime: 21 days
也许我应该降低块大小?我真的不清楚。我注意到当服务器上可用的工作人员较少时,代码似乎工作得更好......