我认为您要问的问题类似于以下内容……尽管其中并没有太多的不平等约束-只有一个。我没有使用数百万个项目......因为这会花费很多时间,并且可能需要大量的参数调整......但我在下面使用了 N=100。
import numpy as np
import mystic as my
N = 100 #1000 # N=len(x)
M = 1e10 # max of c_i
K = 1000 # max of sum(x)
Q = 4 # 40 # npop = N*Q
G = 200 # gtol
# arrays of fixed values
a = np.random.rand(N)
b = np.random.rand(N)
c = np.random.rand(N) * M
# build objective
def cost_factory(a, b, c, max=False):
i = -1 if max else 1
def cost(x):
d = 1. / (1 + np.exp(-a * x))
return i * np.sum(d * (b * c - x))
return cost
objective = cost_factory(a, b, c, max=True)
bounds = [(0., K)] * N
def penalty_norm(x): # < 0
return np.sum(x) - K
# build penalty: sum(x) <= K
@my.penalty.linear_inequality(penalty_norm, k=1e12)
def penalty(x):
return 0.0
# uncomment if want hard constraint of sum(x) == K
#@my.constraints.normalized(mass=1000)
def constraints(x):
return x
然后运行脚本...
if __name__ == '__main__':
mon = my.monitors.VerboseMonitor(10)
#from pathos.pools import ThreadPool as Pool
#from pathos.pools import ProcessPool as Pool
#p = Pool()
#Powell = my.solvers.PowellDirectionalSolver
# use class-based solver interface
"""
solver = my.solvers.DifferentialEvolutionSolver2(len(bounds), N*Q)
solver.SetGenerationMonitor(mon)
solver.SetPenalty(penalty)
solver.SetConstraints(constraints)
solver.SetStrictRanges(*my.tools.unpair(bounds))
solver.SetRandomInitialPoints(*my.tools.unpair(bounds))
solver.SetTermination(my.termination.ChangeOverGeneration(1e-8,G))
solver.Solve(objective, CrossProbability=.9, ScalingFactor=.8)
result = [solver.bestSolution]
print('cost: %s' % solver.bestEnergy)
"""
# use one-line interface
result = my.solvers.diffev2(objective, x0=bounds, bounds=bounds, penalty=penalty, constraints=constraints, npop=N*Q, ftol=1e-8, gtol=G, disp=True, full_output=True, cross=.9, scale=.8, itermon=mon)#, map=p.map)
# use ensemble of fast local solvers
#result = my.solvers.lattice(objective, len(bounds), N*Q, bounds=bounds, penalty=penalty, constraints=constraints, ftol=1e-8, gtol=G, disp=True, full_output=True, itermon=mon)#, map=p.map)#, solver=Powell)
#p.close(); p.join(); p.clear()
print(np.sum(result[0]))
我还注释掉了并行计算的一些用途,但很容易取消注释。
我认为您可能必须非常努力地调整求解器才能找到该特定问题的全局最大值。它还需要有足够的并行元素……由于 N 的大小很大。
但是,如果您想使用符号约束作为输入,您可以这样做:
eqn = ' + '.join("x{i}".format(i=i) for i in range(N)) + ' <= {K}'.format(K=K)
constraint = my.symbolic.generate_constraint(my.symbolic.generate_solvers(my.symbolic.simplify(eqn)))
或者,对于软约束(即惩罚):
penalty = my.symbolic.generate_penalty(my.symbolic.generate_conditions(eqn))