2

我想将依赖类型定义为eqType. 例如,假设我们定义了以下依赖类型Tn

From mathcomp Require Import all_ssreflect.

Variable T: nat -> eqType.

Inductive Tn: Type := BuildT: forall n, T n -> Tn.

为了做到这一点,我为eqType定义了一个相等函数:Tn_eqTn

Definition Tn_eq: rel Tn :=
  fun '(BuildT n1 t1) '(BuildT n2 t2) =>
    (if n1 == n2 as b return (n1==n2) = b -> bool
     then fun E => t1 == eq_rect_r T t2 (elimTF eqP E)
     else fun _ => false) (erefl (n1 == n2)).

然后我试图证明相等公理,Tn_eq但它失败了。

Lemma Tn_eqP: Equality.axiom Tn_eq.
Proof.
  case=>n1 t1; case=>n2 t2//=.
  case_eq(n1==n2).

我在这里有一个错误:

Illegal application: 
The term "elimTF" of type
 "forall (P : Prop) (b c : bool), reflect P b -> b = c -> if c then P else ~ P"
cannot be applied to the terms
 "n1 = n2" : "Prop"
 "b" : "bool"
 "true" : "bool"
 "eqP" : "reflect (n1 = n2) (n1 == n2)"
 "E" : "b = true"
The 4th term has type "reflect (n1 = n2) (n1 == n2)" which should be coercible to
 "reflect (n1 = n2) b".

我应该如何证明这个引理?

4

2 回答 2

2

在没有额外帮助的情况下在 mathcomp 中执行此操作的最佳当前方法(参见下文)是使用(部分)双射,而不是手动定义相等性及其正确性证明:

Definition encode x := let: BuildT _ tn := x in Tagged T tn.
Definition decode (x : sigT T) := BuildT (tagged x).
Lemma encodeK : cancel encode decode. Proof. by case. Qed.
Definition Tn_eqMixin := CanEqMixin encodeK.
Canonical Tn_eqType := EqType Tn Tn_eqMixin.

自动化方法是:

PS:如果你真的需要,你总是可以相对容易地证明与你自己的相等:

Lemma Tn_eqE : Tn_eq =2 eq_op.
Proof.
case=> [n tn] [m tm]; rewrite [RHS]/eq_op/= -tag_eqE/= /tag_eq/= /tagged_as/=.
by case: eqP => //= p; rewrite [elimTF _ _](eq_irrelevance _ p).
Qed.

(有时证明程序相等性确实比从头开始证明正确性更容易。)

于 2021-01-18T20:37:14.280 回答
1

开始了:

From Coq Require Import EqdepFacts.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat.

Variable T: nat -> eqType.

Inductive Tn: Type := BuildT: forall n, T n -> Tn.

Definition Tn_eq: rel Tn :=
  fun '(BuildT n1 t1) '(BuildT n2 t2) =>
    (if n1 == n2 as b return (n1==n2) = b -> bool
     then fun E => t1 == eq_rect_r T t2 (elimTF eqP E)
     else fun _ => false) (erefl (n1 == n2)).

Lemma Tn_eqP: Equality.axiom Tn_eq.
Proof.
case=> n1 t1; case=> n2 t2 /=.
case: eqP => [eq1 | neq1]; last by constructor; case.
case: eqP.
- move=> ->; constructor; move: t2; rewrite [elimTF _ _]eq_irrelevance.
  by case: _ / eq1.
move=> neq2; constructor.
case=> _ exT; move: (eq_sigT_snd exT) => Cast; apply: neq2.
rewrite -Cast.
rewrite [eq_sigT_fst _]eq_irrelevance [elimTF _ _]eq_irrelevance.
by case: _ / eq1.
Qed.
于 2019-12-02T10:57:28.097 回答