似乎发布的代码正在使用“隐式”任意精度类型(“数字”在 [0, 999999999] 范围内)来递归计算所有乘以 2,这意味着,例如 n = 100,执行 100乘以那些膨胀的计算。
根据指数是偶数还是奇数,每次将数字乘以自身或乘以 2 应该更有效(O(log(n))而不是 O(n))。例如 2 7 = 2 * (2 3 * 2 3 )。
另一种方法是显式实现 Bing Int 类型,但使用二进制底层类型(例如 a uint32_t
)。计算 2 n将是微不足道的,它只是一个最终幂为 2 的零数组(同样,只有一个非零位)。
现在,要获得(以 10 为底)数字的总和,您需要将该数字转换为基数,例如 100000000(就像 OP 所做的那样),为此,您必须在两个 Big Ints 和一个 long 之间实现一个长减法除以 100000000,这也会给你余数。使用该余数计算数字的部分总和并进行迭代。
以下是最小实现,可在此处测试。
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#define D_BASE 1000000
#define MSB_MASK 1 << 31
typedef struct
{
uint32_t size;
uint32_t capacity;
uint32_t *digits;
} BigInt;
void divide_bigint(BigInt *n, uint32_t x, uint32_t *remainder);
BigInt *make_bigint_of_two_raised_to(uint32_t n)
{
BigInt *p = malloc(sizeof *p);
if (!p)
{
perror("Fatal error");
exit(1);
}
uint32_t pos = n / 32;
uint32_t remainder = n % 32;
uint32_t capacity = (remainder == 31) ? pos + 2 : pos + 1;
uint32_t *pp = calloc(capacity, sizeof *pp);
if (!pp)
{
perror("Error initializing a Big Int as a power of two");
free(p);
exit(1);
}
p->capacity = capacity;
p->size = capacity;
pp[pos] = 1u << remainder;
p->digits = pp;
return p;
}
void free_bigint(BigInt **p);
uint64_t sum_of_digits_of_two_raised_to_the_power(uint32_t n)
{
BigInt *power_of_two = make_bigint_of_two_raised_to(n);
uint32_t remainder;
uint64_t sum = 0;
while (!(power_of_two->size == 1 && power_of_two->digits[0] == 0))
{
divide_bigint(power_of_two, 1000000000, &remainder);
while (remainder)
{
sum += remainder % 10;
remainder /= 10;
}
}
free_bigint(&power_of_two);
return sum;
}
void test(uint32_t n)
{
uint64_t sum = sum_of_digits_of_two_raised_to_the_power(n);
printf("Sum of digits of 2^%d: %" PRIu64 "\n", n, sum);
}
int main(void)
{
test(5);
test(10);
test(1000);
test(10000);
test(100000);
test(1000000);
return 0;
}
void shrink_size(BigInt *n)
{
while ( n->size > 1 )
{
if ( n->digits[n->size - 1] == 0 && !(n->digits[n->size - 2] & MSB_MASK) )
--n->size;
else
break;
}
}
void divide_bigint(BigInt *n, uint32_t x, uint32_t *remainder)
{
uint64_t carry = 0;
uint32_t i = n->size;
while ( i-- > 0 )
{
carry <<= 32;
carry += n->digits[i];
if ( carry < x )
{
n->digits[i] = 0;
continue;
}
uint64_t multiplier = (carry / x);
carry -= multiplier * x;
n->digits[i] = (uint32_t)multiplier;
}
shrink_size(n);
*remainder = carry;
}
void free_bigint(BigInt **p)
{
if (p && *p)
{
free((*p)->digits);
free(*p);
*p = NULL;
}
}