2

我正在尝试解决线性规划问题。以下是问题的规格:

我有一个网络流问题已转换为线性规划问题。因此,必须强制执行所有流量约束,例如容量、流量守恒等。我的目标是最小化成本。

决策变量——我通过定义字典并在这 128 个位置中的每一个位置添加决策变量来构建两个 8x8 矩阵。

约束 - 总共有 24 个约束,即: 1) 流程从源头开始。两个 8x8 矩阵的 2 个约束。2) 水流在水槽处结束。两个 8x8 矩阵的 2 个约束。3) 流量守恒有 12 个约束,两个矩阵各有 8 个。4)有2个约束来尊重容量约束,每个矩阵1个。5)有6个约束避免重复

所有变量都必须是二进制的。

目标 - 这些 8x8 矩阵中的某些变量的总和需要最小化。

同样,所有变量都必须是二进制的。

我已经能够在 Google ORTOOLS 中编写解决方案,解决方案收敛并显示最小值。但是,当我查看变量时,有些变量具有非二进制值。此外,解决方案是错误的(我有一个在 excel 中运行的现有解决方案,它是正确的并且是不同的)。

如果有人能指出我正确的方向,我将不胜感激。以下是用 Python 36 编写的代码。

    from ortools.linear_solver import pywraplp
import numpy as np

def configure_constraints(cfg, solver, variable_list):

    print(cfg)
    dest_convs = cfg['dest_convs']
    msize = cfg['lookback_win'] + 1 + 1
    rem_capacity = cfg['rem_caps']

    # Constraint 1 - Flow starts at the source
    for i in range(dest_convs):
        # print([(i, 0, c) for c in range(1, msize)])
        solver.Add(solver.Sum([variable_list[(i,0,c)] for c in range(1, msize)]) == 1)

    # Constraint 2 - Flow ends at the sink
    for i in range(dest_convs):
        # print([(i, r, msize - 1) for r in range(1, msize)])
        solver.Add(solver.Sum([variable_list[(i,r,msize - 1)] for r in range(1, msize)]) == 1)

    # Constraint 3 - Flow Conservation
    for i in range(dest_convs):
        for r in range(msize - 1):
            if r+1 == msize - 1:
                continue

            solver.Add(solver.Sum([variable_list[(i,rind, r+1)] for rind in range(r + 1)]) - solver.Sum([variable_list[(i,r+1, cind + 1)] for cind in range(r+1, msize - 1)]) == 0)
    #
    # # Constraint 4 - Capacity Constraint
    for i in range(dest_convs):
        solver.Add(solver.Sum([variable_list[(i, r, c)] for r in range(1, msize-1) for c in range(r+1, msize - 1)]) <= rem_capacity[i] - 1)

    #
    # # Constraint 5 - 1-vehicle, 1-conveyor
    dest_conv_list = []
    for i in range(dest_convs):
        dest_conv_list.append([])
        for r in range(1, msize - 1):
            dest_conv_list[i].append(sum([variable_list[(i,r,c)] for c in range(r+1, msize)]))

    for items in zip(*dest_conv_list):
        solver.Add(solver.Sum(items) == 1)



def configure_objective(solver, variable_list, cost_vars):
    # Objective
    solver.Minimize(solver.Sum([variable_list[items] for items in zip(*np.where(cost_vars))]))


def solve(solver):
    result_status = solver.Solve()
    return result_status

def configure_variables(cfg, solver):

    # identify variables for the objective function
    # print(cfg)
    nvehs = cfg['vehicles']
    dest_convs = cfg['dest_convs']
    color_vec = cfg['color_vec']
    cur_cars = cfg['cur_cars']
    msize = cfg['lookback_win'] + 1 + 1

    # objective_mat = np.zeros((msize, msize), dtype="int32")
    mat = [[[0] * msize for i in range(msize)] for j in range(dest_convs)]

    # source to vehicles
    for i in range(dest_convs):
        for j in range(nvehs):
            # print(color_vec[j], cur_cars[i])
            if color_vec[j] != cur_cars[i]:
                mat[i][0][j+1] = 1


    for h in range(dest_convs):
        for i in range(0, nvehs):
            for j in range(i+1, nvehs):
                # print(i+1,j+1)
                # print(color_vec[i+1], color_vec[j])
                if color_vec[i] != color_vec[j]:
                    mat[h][i+1][j + 1] = 1

    cost_vars = np.array(mat).reshape(dest_convs, msize, msize)
    print(np.array(mat).reshape(dest_convs,msize,msize))

    dvars = {}
    for i in range(dest_convs):
        for j in range(msize):
            for k in range(msize):
                dvars[i, j, k] = solver.BoolVar('x[%i,%i, %i]' % (i, j, k))


    return  dvars, cost_vars

def main(cfg, what):
    solver = pywraplp.Solver('SolveSimpleSystem', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)

    dvars_list, cost_vars = configure_variables(cfg, solver)

    configure_constraints(cfg, solver, dvars_list)
    configure_objective(solver, dvars_list, cost_vars)

    result_status = solve(solver)

    print('Number of Variables:', solver.NumVariables())
    print('Number of Constraints:', solver.NumConstraints())
    # print('Constraints:',     solver.)

    if result_status == solver.OPTIMAL:
        print('Solution Found.')
        # The problem has an optimal solution.
        print(('Problem solved in %f milliseconds' % solver.wall_time()))
        # The objective value of the solution.
        print(('Optimal objective value = %f' % solver.Objective().Value()))

        var_sum = 0
        for variable in dvars_list:
            print(('%s = %f' % (dvars_list[variable].name(), dvars_list[variable].solution_value())))
            var_sum += dvars_list[variable].solution_value()

        print(('Variable sum = %f' % var_sum))

        # The value of each variable in the solution.
    elif result_status == solver.INFEASIBLE:
        print('No solution found.')
    elif result_status == solver.POSSIBLE_OVERFLOW:
        print('Some inputs are too large and may cause an integer overflow.')


if __name__ == '__main__':
    cfg = {'vehicles': 6,
           'dest_convs': 2,
           'cur_cars':['B', 'R'],
           'rem_caps': [3,3],
           'lookback_win':6,
           'color_vec': ['W', 'W', 'B', 'B', 'R', 'B'],
           }

    main(cfg, 'cost')
4

1 回答 1

4

请参阅:https ://groups.google.com/forum/#!msg/or-tools-discuss/p5qVzZWIeIg/g77egaD-AAAJ

Glop是一个纯LP。它只会解决mip问题的松弛。因此,错误检查器告诉您解决方案不是完整的,这是正常的。

如果您的程序是纯布尔值,您可以将 GLOP_LINEAR_PROGRAMMING 更改为 BOP_INTEGER_PROGRAMMING。或者你可以留在CBC

这就是为什么你应该使用:

  • pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING
  • pywraplp.Solver.BOP_INTEGER_PROGRAMMING
  • pywraplp.Solver.SAT_INTEGER_PROGRAMMING

而不是pywraplp.Solver.GLOP_LINEAR_PROGRAMMING.

于 2019-12-01T11:57:28.937 回答