如何获取给定类 A 的所有用@decorator2 装饰的方法?
class A():
def method_a(self):
pass
@decorator1
def method_b(self, b):
pass
@decorator2
def method_c(self, t=5):
pass
我已经在这里回答了这个问题:Calling functions by array index in Python =)
如果您无法控制类定义,这是您想要假设的一种解释,这是不可能的(没有代码阅读反射),因为例如装饰器可能是无操作装饰器(如在我的链接示例中)仅返回未修改的函数。(尽管如此,如果您允许自己包装/重新定义装饰器,请参阅方法 3:将装饰器转换为“自我意识”,那么您会找到一个优雅的解决方案)
这是一个可怕的骇客,但您可以使用该inspect
模块来读取源代码本身并对其进行解析。这在交互式解释器中不起作用,因为检查模块将拒绝在交互模式下提供源代码。然而,下面是一个概念证明。
#!/usr/bin/python3
import inspect
def deco(func):
return func
def deco2():
def wrapper(func):
pass
return wrapper
class Test(object):
@deco
def method(self):
pass
@deco2()
def method2(self):
pass
def methodsWithDecorator(cls, decoratorName):
sourcelines = inspect.getsourcelines(cls)[0]
for i,line in enumerate(sourcelines):
line = line.strip()
if line.split('(')[0].strip() == '@'+decoratorName: # leaving a bit out
nextLine = sourcelines[i+1]
name = nextLine.split('def')[1].split('(')[0].strip()
yield(name)
有用!:
>>> print(list( methodsWithDecorator(Test, 'deco') ))
['method']
请注意,必须注意解析和python语法,例如@deco
和@deco(...
是有效的结果,但@deco2
如果我们只是要求,则不应返回'deco'
。我们注意到,根据http://docs.python.org/reference/compound_stmts.html上的官方 python 语法,装饰器如下:
decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE
不必处理类似的案件,我们松了一口气@(deco)
。但请注意,如果您有非常复杂的装饰器,这仍然对您没有帮助@getDecorator(...)
,例如
def getDecorator():
return deco
因此,这种解析代码的最佳策略无法检测到这样的情况。尽管如果您使用的是这种方法,那么您真正需要的是定义中方法之上的内容,在这种情况下是getDecorator
.
根据规范,@foo1.bar2.baz3(...)
作为装饰器也是有效的。您可以扩展此方法以使用它。您可能还可以扩展此方法以返回 a<function object ...>
而不是函数的名称,但需要付出很多努力。然而,这种方法是骇人听闻和可怕的。
如果您无法控制装饰器定义(这是您想要的另一种解释),那么所有这些问题都会消失,因为您可以控制装饰器的应用方式。因此,您可以通过包装来修改装饰器,创建自己的装饰器,并使用它来装饰您的函数。让我再说一遍:你可以制作一个装饰器来装饰你无法控制的装饰器,“启发”它,在我们的例子中,它可以做它之前所做的事情,但也可以将元数据属性附加.decorator
到它返回的可调用对象,允许您跟踪“这个函数是否被装饰?让我们检查 function.decorator!”。您可以遍历类的方法,然后检查装饰器是否具有适当的.decorator
属性!=) 如此处所示:
def makeRegisteringDecorator(foreignDecorator):
"""
Returns a copy of foreignDecorator, which is identical in every
way(*), except also appends a .decorator property to the callable it
spits out.
"""
def newDecorator(func):
# Call to newDecorator(method)
# Exactly like old decorator, but output keeps track of what decorated it
R = foreignDecorator(func) # apply foreignDecorator, like call to foreignDecorator(method) would have done
R.decorator = newDecorator # keep track of decorator
#R.original = func # might as well keep track of everything!
return R
newDecorator.__name__ = foreignDecorator.__name__
newDecorator.__doc__ = foreignDecorator.__doc__
# (*)We can be somewhat "hygienic", but newDecorator still isn't signature-preserving, i.e. you will not be able to get a runtime list of parameters. For that, you need hackish libraries...but in this case, the only argument is func, so it's not a big issue
return newDecorator
示范@decorator
:
deco = makeRegisteringDecorator(deco)
class Test2(object):
@deco
def method(self):
pass
@deco2()
def method2(self):
pass
def methodsWithDecorator(cls, decorator):
"""
Returns all methods in CLS with DECORATOR as the
outermost decorator.
DECORATOR must be a "registering decorator"; one
can make any decorator "registering" via the
makeRegisteringDecorator function.
"""
for maybeDecorated in cls.__dict__.values():
if hasattr(maybeDecorated, 'decorator'):
if maybeDecorated.decorator == decorator:
print(maybeDecorated)
yield maybeDecorated
有用!:
>>> print(list( methodsWithDecorator(Test2, deco) ))
[<function method at 0x7d62f8>]
但是,“注册的装饰器”必须是最外层的装饰器,否则.decorator
属性注解会丢失。例如在一列火车上
@decoOutermost
@deco
@decoInnermost
def func(): ...
您只能看到decoOutermost
暴露的元数据,除非我们保留对“更多内部”包装器的引用。
旁注:上述方法还可以构建一个.decorator
跟踪应用的装饰器和输入函数和装饰器工厂参数的整个堆栈。=) 例如,如果您考虑注释掉的行R.original = func
,则可以使用这样的方法来跟踪所有包装层。如果我写了一个装饰器库,这就是我个人会做的事情,因为它允许进行深入的自省。
@foo
和之间也有区别@bar(...)
。虽然它们都是规范中定义的“装饰器表达式”,但请注意这foo
是一个装饰器,而bar(...)
返回一个动态创建的装饰器,然后应用它。因此,您需要一个单独的函数makeRegisteringDecoratorFactory
,这有点像makeRegisteringDecorator
但更像 META:
def makeRegisteringDecoratorFactory(foreignDecoratorFactory):
def newDecoratorFactory(*args, **kw):
oldGeneratedDecorator = foreignDecoratorFactory(*args, **kw)
def newGeneratedDecorator(func):
modifiedFunc = oldGeneratedDecorator(func)
modifiedFunc.decorator = newDecoratorFactory # keep track of decorator
return modifiedFunc
return newGeneratedDecorator
newDecoratorFactory.__name__ = foreignDecoratorFactory.__name__
newDecoratorFactory.__doc__ = foreignDecoratorFactory.__doc__
return newDecoratorFactory
示范@decorator(...)
:
def deco2():
def simpleDeco(func):
return func
return simpleDeco
deco2 = makeRegisteringDecoratorFactory(deco2)
print(deco2.__name__)
# RESULT: 'deco2'
@deco2()
def f():
pass
这个生成器工厂包装器也适用:
>>> print(f.decorator)
<function deco2 at 0x6a6408>
奖金让我们甚至尝试使用方法 #3 进行以下操作:
def getDecorator(): # let's do some dispatching!
return deco
class Test3(object):
@getDecorator()
def method(self):
pass
@deco2()
def method2(self):
pass
结果:
>>> print(list( methodsWithDecorator(Test3, deco) ))
[<function method at 0x7d62f8>]
如您所见,与方法 2 不同,@deco 被正确识别,即使它从未在类中明确写入。与 method2 不同,如果该方法是在运行时添加(手动,通过元类等)或继承的,这也将起作用。
请注意,您也可以装饰一个类,因此如果您“启发”一个用于装饰方法和类的装饰器,然后在您要分析的类的主体中编写一个类,那么methodsWithDecorator
将返回装饰类以及装饰方法。可以认为这是一个特性,但您可以通过检查装饰器的参数轻松编写逻辑来忽略这些特性,即.original
,实现所需的语义。
为了扩展@ninjagecko 在方法 2:源代码解析中的出色回答,ast
只要检查模块有权访问源代码,您就可以使用 Python 2.6 中引入的模块执行自检。
def findDecorators(target):
import ast, inspect
res = {}
def visit_FunctionDef(node):
res[node.name] = [ast.dump(e) for e in node.decorator_list]
V = ast.NodeVisitor()
V.visit_FunctionDef = visit_FunctionDef
V.visit(compile(inspect.getsource(target), '?', 'exec', ast.PyCF_ONLY_AST))
return res
我添加了一个稍微复杂的装饰方法:
@x.y.decorator2
def method_d(self, t=5): pass
结果:
> findDecorators(A)
{'method_a': [],
'method_b': ["Name(id='decorator1', ctx=Load())"],
'method_c': ["Name(id='decorator2', ctx=Load())"],
'method_d': ["Attribute(value=Attribute(value=Name(id='x', ctx=Load()), attr='y', ctx=Load()), attr='decorator2', ctx=Load())"]}
如果您确实可以控制装饰器,则可以使用装饰器类而不是函数:
class awesome(object):
def __init__(self, method):
self._method = method
def __call__(self, obj, *args, **kwargs):
return self._method(obj, *args, **kwargs)
@classmethod
def methods(cls, subject):
def g():
for name in dir(subject):
method = getattr(subject, name)
if isinstance(method, awesome):
yield name, method
return {name: method for name,method in g()}
class Robot(object):
@awesome
def think(self):
return 0
@awesome
def walk(self):
return 0
def irritate(self, other):
return 0
如果我调用awesome.methods(Robot)
它返回
{'think': <mymodule.awesome object at 0x000000000782EAC8>, 'walk': <mymodulel.awesome object at 0x000000000782EB00>}
对于我们这些只想要最简单的情况的人 - 即,我们可以完全控制我们正在使用的类和我们试图跟踪的装饰器的单文件解决方案,我有一个答案. ninjagecko 链接到一个解决方案,当你可以控制你想要跟踪的装饰器时,但我个人发现它很复杂而且很难理解,可能是因为我之前从未使用过装饰器。因此,我创建了以下示例,目标是尽可能简单明了。它是一个装饰器,一个具有多个装饰方法的类,以及用于检索和运行所有应用了特定装饰器的方法的代码。
# our decorator
def cool(func, *args, **kwargs):
def decorated_func(*args, **kwargs):
print("cool pre-function decorator tasks here.")
return_value = func(*args, **kwargs)
print("cool post-function decorator tasks here.")
return return_value
# add is_cool property to function so that we can check for its existence later
decorated_func.is_cool = True
return decorated_func
# our class, in which we will use the decorator
class MyClass:
def __init__(self, name):
self.name = name
# this method isn't decorated with the cool decorator, so it won't show up
# when we retrieve all the cool methods
def do_something_boring(self, task):
print(f"{self.name} does {task}")
@cool
# thanks to *args and **kwargs, the decorator properly passes method parameters
def say_catchphrase(self, *args, catchphrase="I'm so cool you could cook an egg on me.", **kwargs):
print(f"{self.name} says \"{catchphrase}\"")
@cool
# the decorator also properly handles methods with return values
def explode(self, *args, **kwargs):
print(f"{self.name} explodes.")
return 4
def get_all_cool_methods(self):
"""Get all methods decorated with the "cool" decorator.
"""
cool_methods = {name: getattr(self, name)
# get all attributes, including methods, properties, and builtins
for name in dir(self)
# but we only want methods
if callable(getattr(self, name))
# and we don't need builtins
and not name.startswith("__")
# and we only want the cool methods
and hasattr(getattr(self, name), "is_cool")
}
return cool_methods
if __name__ == "__main__":
jeff = MyClass(name="Jeff")
cool_methods = jeff.get_all_cool_methods()
for method_name, cool_method in cool_methods.items():
print(f"{method_name}: {cool_method} ...")
# you can call the decorated methods you retrieved, just like normal,
# but you don't need to reference the actual instance to do so
return_value = cool_method()
print(f"return value = {return_value}\n")
运行上面的例子会给我们以下输出:
explode: <bound method cool.<locals>.decorated_func of <__main__.MyClass object at 0x00000220B3ACD430>> ...
cool pre-function decorator tasks here.
Jeff explodes.
cool post-function decorator tasks here.
return value = 4
say_catchphrase: <bound method cool.<locals>.decorated_func of <__main__.MyClass object at 0x00000220B3ACD430>> ...
cool pre-function decorator tasks here.
Jeff says "I'm so cool you could cook an egg on me."
cool post-function decorator tasks here.
return value = None
请注意,此示例中的修饰方法具有不同类型的返回值和不同的签名,因此能够全部检索并运行它们的实用价值有点可疑。但是,在有许多类似方法的情况下,所有方法都具有相同的签名和/或返回值类型(例如,如果您正在编写连接器以从一个数据库中检索未规范化的数据,对其进行规范化并将其插入到第二个数据库中,标准化数据库,并且您有一堆类似的方法,例如 15 个 read_and_normalize_table_X 方法),能够即时检索(并运行)它们可能会更有用。
也许,如果装饰器不是太复杂(但我不知道是否有不那么 hacky 的方式)。
def decorator1(f):
def new_f():
print "Entering decorator1", f.__name__
f()
new_f.__name__ = f.__name__
return new_f
def decorator2(f):
def new_f():
print "Entering decorator2", f.__name__
f()
new_f.__name__ = f.__name__
return new_f
class A():
def method_a(self):
pass
@decorator1
def method_b(self, b):
pass
@decorator2
def method_c(self, t=5):
pass
print A.method_a.im_func.func_code.co_firstlineno
print A.method_b.im_func.func_code.co_firstlineno
print A.method_c.im_func.func_code.co_firstlineno
我不想添加太多,只是 ninjagecko 方法 2 的一个简单变体。它可以创造奇迹。
相同的代码,但使用列表理解而不是生成器,这是我需要的。
def methodsWithDecorator(cls, decoratorName):
sourcelines = inspect.getsourcelines(cls)[0]
return [ sourcelines[i+1].split('def')[1].split('(')[0].strip()
for i, line in enumerate(sourcelines)
if line.split('(')[0].strip() == '@'+decoratorName]
解决此问题的一种简单方法是将代码放入装饰器中,将传入的每个函数/方法添加到数据集(例如列表)中。
例如
def deco(foo):
functions.append(foo)
return foo
现在每个带有deco 装饰器的函数都将被添加到函数中。