我有一个非常复杂的非线性动力系统,我从 CFD(计算流体动力学)知道每个时间实例的时间常数和稳态响应。我如何 (1) 使用此信息构建流程模拟器?(2) 如果我知道测量的输入和输出以及稳态值,我如何调整时间常数值?
1 回答
问题 1:构建过程模拟器
您可能想先尝试线性时间序列模型,然后如果这不起作用,则转到非线性模型。下面是一个用于识别线性时间序列模型的示例脚本。
from gekko import GEKKO
import pandas as pd
import matplotlib.pyplot as plt
# load data and parse into columns
url = 'http://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt'
data = pd.read_csv(url)
t = data['Time']
u = data[['H1','H2']]
y = data[['T1','T2']]
# generate time-series model
m = GEKKO(remote=False) # remote=True for MacOS
# system identification
na = 2 # output coefficients
nb = 2 # input coefficients
yp,p,K = m.sysid(t,u,y,na,nb,diaglevel=1)
plt.figure()
plt.subplot(2,1,1)
plt.plot(t,u)
plt.legend([r'$u_0$',r'$u_1$'])
plt.ylabel('MVs')
plt.subplot(2,1,2)
plt.plot(t,y)
plt.plot(t,yp)
plt.legend([r'$y_0$',r'$y_1$',r'$z_0$',r'$z_1$'])
plt.ylabel('CVs')
plt.xlabel('Time')
plt.savefig('sysid.png')
plt.show()
请注意,数据可以是动态数据,不一定分为稳态和动态部分。您需要使用文档中详述m.sysid
的正确输入进行调用。一旦你有了一个好的模型,你就可以把它转换成一个模拟器,函数的参数输出在哪里。m.arx(p)
p
m.sysid
如果线性识别不起作用,那么您可以尝试非线性方法,例如TCLab B 练习(参见 Python Gekko 神经网络)中所示。您可以使用Gekko 的深度学习功能来简化编码。建立稳态关系后,将具有一阶或二阶关系的动力学与将稳态输出与动态输出相关联的微分方程添加,例如m.Equation(tau * x.dt() + x = x_ss)
其中tau
是时间常数,x.dt()
是时间导数,x
是动态输出,和x_ss
是稳态输出。这被称为 Hammerstein 模型,因为稳态先于动态计算。您还可以将动态作为维纳模型放在输入上。您将能够在线找到有关 Hammerstein-Wiener 模型的更多信息。
问题 2:调整时间常数
如果您已经有了稳态关系并且想要调整时间常数,那么回归是一种强大的方法,因为它可以尝试时间常数的许多不同组合,以最小化模型和测量值之间的差异。有几个使用scipy.optimize.minimize
和gekko执行此操作的示例。
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from gekko import GEKKO
# Import or generate data
filename = 'tclab_dyn_data2.csv'
try:
data = pd.read_csv(filename)
except:
url = 'http://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt'
data = pd.read_csv(url)
# Create GEKKO Model
m = GEKKO()
m.time = data['Time'].values
# Parameters to Estimate
U = m.FV(value=10,lb=1,ub=20)
alpha1 = m.FV(value=0.01,lb=0.003,ub=0.03) # W / % heater
alpha2 = m.FV(value=0.005,lb=0.002,ub=0.02) # W / % heater
# STATUS=1 allows solver to adjust parameter
U.STATUS = 1
alpha1.STATUS = 1
alpha2.STATUS = 1
# Measured inputs
Q1 = m.MV(value=data['H1'].values)
Q2 = m.MV(value=data['H2'].values)
# State variables
TC1 = m.CV(value=data['T1'].values)
TC1.FSTATUS = 1 # minimize fstatus * (meas-pred)^2
TC2 = m.CV(value=data['T2'].values)
TC2.FSTATUS = 1 # minimize fstatus * (meas-pred)^2
Ta = m.Param(value=19.0+273.15) # K
mass = m.Param(value=4.0/1000.0) # kg
Cp = m.Param(value=0.5*1000.0) # J/kg-K
A = m.Param(value=10.0/100.0**2) # Area not between heaters in m^2
As = m.Param(value=2.0/100.0**2) # Area between heaters in m^2
eps = m.Param(value=0.9) # Emissivity
sigma = m.Const(5.67e-8) # Stefan-Boltzmann
# Heater temperatures in Kelvin
T1 = m.Intermediate(TC1+273.15)
T2 = m.Intermediate(TC2+273.15)
# Heat transfer between two heaters
Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective
Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative
# Semi-fundamental correlations (energy balances)
m.Equation(TC1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
+ eps * sigma * A * (Ta**4 - T1**4) \
+ Q_C12 + Q_R12 \
+ alpha1*Q1))
m.Equation(TC2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
+ eps * sigma * A * (Ta**4 - T2**4) \
- Q_C12 - Q_R12 \
+ alpha2*Q2))
# Options
m.options.IMODE = 5 # MHE
m.options.EV_TYPE = 2 # Objective type
m.options.NODES = 2 # Collocation nodes
m.options.SOLVER = 3 # IPOPT
# Solve
m.solve(disp=True)
# Parameter values
print('U : ' + str(U.value[0]))
print('alpha1: ' + str(alpha1.value[0]))
print('alpha2: ' + str(alpha2.value[0]))
# Create plot
plt.figure()
ax=plt.subplot(2,1,1)
ax.grid()
plt.plot(data['Time'],data['T1'],'ro',label=r'$T_1$ measured')
plt.plot(m.time,TC1.value,color='purple',linestyle='--',\
linewidth=3,label=r'$T_1$ predicted')
plt.plot(data['Time'],data['T2'],'bx',label=r'$T_2$ measured')
plt.plot(m.time,TC2.value,color='orange',linestyle='--',\
linewidth=3,label=r'$T_2$ predicted')
plt.ylabel('Temperature (degC)')
plt.legend(loc=2)
ax=plt.subplot(2,1,2)
ax.grid()
plt.plot(data['Time'],data['H1'],'r-',\
linewidth=3,label=r'$Q_1$')
plt.plot(data['Time'],data['H2'],'b:',\
linewidth=3,label=r'$Q_2$')
plt.ylabel('Heaters')
plt.xlabel('Time (sec)')
plt.legend(loc='best')
plt.show()