所以这就是我走了多远。它回答了这个问题,但对于 Mauna Loa 示例来说真的很慢,但这可能是一个难以处理的数据集:
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.gaussian_process.kernels import ConstantKernel,RBF,WhiteKernel,RationalQuadratic,ExpSineSquared
import numpy as np
from sklearn.datasets import fetch_openml
# from https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html
def load_mauna_loa_atmospheric_co2():
ml_data = fetch_openml(data_id=41187)
months = []
ppmv_sums = []
counts = []
y = ml_data.data[:, 0]
m = ml_data.data[:, 1]
month_float = y + (m - 1) / 12
ppmvs = ml_data.target
for month, ppmv in zip(month_float, ppmvs):
if not months or month != months[-1]:
months.append(month)
ppmv_sums.append(ppmv)
counts.append(1)
else:
# aggregate monthly sum to produce average
ppmv_sums[-1] += ppmv
counts[-1] += 1
months = np.asarray(months).reshape(-1, 1)
avg_ppmvs = np.asarray(ppmv_sums) / counts
return months, avg_ppmvs
X, y = load_mauna_loa_atmospheric_co2()
# Kernel with parameters given in GPML book
k1 = ConstantKernel(constant_value=66.0**2) * RBF(length_scale=67.0) # long term smooth rising trend
k2 = ConstantKernel(constant_value=2.4**2) * RBF(length_scale=90.0) \
* ExpSineSquared(length_scale=1.3, periodicity=1.0) # seasonal component
# medium term irregularity
k3 = ConstantKernel(constant_value=0.66**2) \
* RationalQuadratic(length_scale=1.2, alpha=0.78)
k4 = ConstantKernel(constant_value=0.18**2) * RBF(length_scale=0.134) \
+ WhiteKernel(noise_level=0.19**2) # noise terms
kernel_gpml = k1 + k2 + k3 + k4
gp = GaussianProcessRegressor(kernel=kernel_gpml)
# print parameters
print(gp.get_params())
param_grid = {'alpha': np.logspace(-2, 4, 5),
'kernel__k1__k1__k1__k1__constant_value': np.logspace(-2, 4, 5),
'kernel__k1__k1__k1__k2__length_scale': np.logspace(-2, 2, 5),
'kernel__k2__k2__noise_level':np.logspace(-2, 1, 5)
}
grid_gp = GridSearchCV(gp,cv=5,param_grid=param_grid,n_jobs=4)
grid_gp.fit(X, y)
帮助我的是首先将模型初始化为gp = GaussianProcessRegressor(kernel=kernel_gpml)
,然后使用该get_params
属性来获取模型超参数的列表。
最后,我注意到 Rasmussen 和 Williams 在他们的书中似乎使用了 Leave one out 交叉验证来调整超参数。