我希望numpy digitize
忽略我数组中的一些值。为了实现这一点,我将不需要的值替换为NaN
并掩盖了这些NaN
值:
import numpy as np
A = np.ma.array(A, mask=np.isnan(A))
尽管如此np.digitize
,将掩码值抛出为-1
. 是否有替代方法可以np.digitize
忽略屏蔽值(或NaN
)?
我希望numpy digitize
忽略我数组中的一些值。为了实现这一点,我将不需要的值替换为NaN
并掩盖了这些NaN
值:
import numpy as np
A = np.ma.array(A, mask=np.isnan(A))
尽管如此np.digitize
,将掩码值抛出为-1
. 是否有替代方法可以np.digitize
忽略屏蔽值(或NaN
)?
我希望它不是性能优化,否则您可以在 digitize 函数之后进行屏蔽:
import numpy as np
A = np.arange(10,dtype=np.float)
A[0] = np.nan
A[-1] = np.nan
bins = np.array([1,2,7])
res = np.digitize(A,bins)
# here np.nan is assigned to the highes bin
# using numpy '1.17.2'
print(res)
# sp you mask you array after the execution of
# np.digitize
print(res[~np.isnan(A)])
>>> [3 1 2 2 2 2 2 3 3 3]
>>> [1 2 2 2 2 2 3 3]