1

我想用下面的代码定义的“L 形”几何形状来解决热扩散问题:

from fipy import CellVariable, Gmsh2D, TransientTerm, DiffusionTerm
from fipy import Matplotlib2DViewer, Viewer
from fipy.tools import numerix

cellSize_1 = 0.05
mesh = Gmsh2D('''
              cellSize = %(cellSize_1)g;
              Point(1) = {0, 0, 0, cellSize};
              Point(2) = {0, 5, 0, cellSize};
              Point(3) = {1, 5, 0, cellSize};
              Point(4) = {1, 1, 0, cellSize};
              Point(5) = {4, 1, 0, cellSize};
              Point(6) = {4, 0, 0, cellSize};
              Line(7) = {1, 2};
              Line(8) = {2, 3};
              Line(9) = {3, 4};
              Line(10) = {4, 5};
              Line(11) = {5, 6};
              Line(12) = {6, 1};
              Physical Surface("Top") = {8};
              Physical Surface("Inner") = {9, 10};
              Physical Surface("Right") = {11};
              Physical Surface("Inner") = {12, 7};
              Line Loop(13) = {7, 8, 9, 10, 11, 12};
              Plane Surface(14) = {13};
              ''' % locals()) # doctest: +GMSH

# Using this mesh, we can construct a solution variable

phi = CellVariable(name = "solution variable",
                   mesh = mesh,
                   value = 0.) # doctest: +GMSH

# We can now create a Viewer to see the mesh

viewer = None
from builtins import input
if __name__ == '__main__':
    try:
        viewer = Viewer(vars=phi, datamin=-1, datamax=3)
        viewer.plotMesh()

    except:
        print("Unable to create a viewer for an irregular mesh (try "+
              "Matplotlib2DViewer or MayaviViewer)")

现在我想将“顶部”和“右”边界定义为狄利克雷边界,常数值为 1 和 0。我想将“内”和“右”定义为通量等于 0 的诺伊曼边界。我应该怎么走关于设置约束?我用了:

phi.constrain(1, where = mesh.Front)
phi.constrain(0, where = mesh.Top)
phi.faceGrad.constrain(0 * mesh.faceNormals, where = mesh.Inner)
phi.faceGrad.constrain(0 * mesh.faceNormals, where = mesh.Outter)

但我得到的只是“AttributeError:'Gmsh2D'对象没有属性'Front'”错误。我怎样才能解决这个问题?非常感谢你。

4

1 回答 1

1

Gmsh 定义的单元格和面的使用Gmsh2D. 具体来说,您想要:

mesh.physicalFaces["Front"]

等等,应该在你的 Gmsh 脚本中定义为 a Physical Line,而不是Physical Surface.

于 2019-11-17T21:52:29.627 回答