另一种方法,如果您有兴趣,使用与上面相同的示例:
library(DECIPHER)
ProtDF <- c(OQS54945.1 = "MINDLKVRKDVEKSKAHCHVKPFGKGSRACERCASHRGHNRKYGMNLCRRCLHTNAKILGFTSFD",
XP_031008245.1 = "KHTESPVEPARRDNLKTAIMSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKASDIGFVKVCDGHTDSSYDGSEF",
TVY80688.1 = "MSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKAADIGFVKHR",
TVY57447.1 = "LPFLKIRVEPARRDNLKPAIMSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKASDIGFVKVCVDAMGTLEPRASSPEL",
TVY47820.1 = "EPARRDNLKTTIMSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKAADIGFVK",
TVY37154.1 = "AISKLNSRPQRPISTTPRKAKHTKSLVEPARRDNLKTAIMSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKASDIGFVKHR",
TVY29458.1 = "KHTESPVEPARRDNLKTAIMSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKASDIGFVKVCDGHTDSSYDGSEF",
TVY14147.1 = "MSHESVWNSRPRTYGKGARACRVCTHKAGLIRKYGLNICRQCFREKASDIGFVKVCDGWIGTLEL",
`sp|Q6CPG3.1|RS29_KLULA` = "MAHENVWYSHPRKFGKGSRQCRISGSHSGLIRKYGLNIDRQSFREKANDIGFYKYR",
`sp|Q8SS73.1|RS29_ENCCU` = "MSFEPSGPHSHRKPFGKGSRSCVSCYTFRGIIRKLMMCRRCFREYAGDIGFAIYD",
`sp|O74329.3|RS29_SCHPO` = "MAHENVWFSHPRKYGKGSRQCAHTGRRLGLIRKYGLNISRQSFREYANDIGFVKYR",
TPX23066.1 = "MTHESVFYSRPRNYGKGSRQCRVCAHKAGLIRKYGLLVCRQCFREKSQDIGFVKYR",
`sp|Q6FWE3.1|RS29_CANGA` = "MAHENVWFSHPRRFGKGSRQCRVCSSHTGLIRKYDLNICRQCFRERASDIGFNKYR",
`sp|Q6BY86.1|RS29_DEBHA` = "MAHESVWFSHPRNFGKGSRQCRVCSSHSGLIRKYDLNICRQCFRERASDIGFNKFR",
XP_028490553.1 = "MSHESVWNSRPRSYGKGSRSCRVCKHSAGLIRKYDLNLCRQCFREKAKDIGFNKFR")
# All pairwise alignments:
# Convert characters to an AA String Set
ProtDF <- AAStringSet(ProtDF)
# Initialize some outputs
AliMat <- matrix(data = list(),
ncol = length(ProtDF),
nrow = length(ProtDF))
DistMat <- matrix(data = 0,
ncol = length(ProtDF),
nrow = length(ProtDF))
# loop through the upper triangle of your matrix
for (m1 in seq_len(length(ProtDF) - 1L)) {
for (m2 in (m1 + 1L):length(ProtDF)) {
# Align each pair
AliMat[[m1, m2]] <- AlignSeqs(myXStringSet = ProtDF[c(m1, m2)],
verbose = FALSE)
# Assign a distance to each alignment, fill both triangles of the matrix
DistMat[m1, m2] <- DistMat[m2, m1] <- DistanceMatrix(myXStringSet = AliMat[[m1, m2]],
type = "dist", # return a single value
includeTerminalGaps = TRUE, # return a global distance
verbose = FALSE)
}
}
dimnames(DistMat) <- list(names(ProtDF),
names(ProtDF))
Dend01 <- IdClusters(myDistMatrix = DistMat,
method = "NJ",
type = "dendrogram",
showPlot = FALSE,
verbose = FALSE)
# A single multiple alignment:
AllAli <- AlignSeqs(myXStringSet = ProtDF,
verbose = FALSE)
AllDist <- DistanceMatrix(myXStringSet = AllAli,
type = "matrix",
verbose = FALSE,
includeTerminalGaps = TRUE)
Dend02 <- IdClusters(myDistMatrix = AllDist,
method = "NJ",
type = "dendrogram",
showPlot = FALSE,
verbose = FALSE)
Dend01,来自所有成对对齐:
Dend02,来自单个多重对齐:
最后,DECIPHER 有一个功能可以在浏览器中加载对齐来查看它,如果您的对齐很大,可能会有点错误,但在这种情况下(并且在这种情况下最多有几百个短序列)就好了:
BrowseSeqs(AllAli)
关于 BrowseSeqs 的附注,由于某种原因,它在 Safari 上的表现不佳,但在 Chrome 上表现得很好。序列按照它们在对齐的字符串集中存在的顺序显示。
编辑:BrowseSeqs 确实可以直接与 safari 配合使用,但它确实存在一个奇怪的问题,即与与 RMarkdown 一起编织的 HTML 合并。很奇怪,但在这里不适用。
另一个重要的方面:我使用的所有函数都有一个processors
参数,默认情况下设置为 1,如果你想对你的核心变得贪婪,你可以将它设置为 NULL,它只会抓住所有可用的东西。如果你正在对齐非常大的字符串集,这可能非常有用,如果你正在做像这个例子这样微不足道的小事情,不是那么多。
combn 是一个很棒的功能,我一直在使用它。然而对于这些非常简单的设置,我喜欢循环通过上三角形,但这只是个人喜好。