0

我目前正在从事基于 Netflix 数据 MovieLens 的数据科学项目。

我已经像这样拆分了测试集和训练集:

# Test set will be 10% of current MovieLens data
set.seed(1, sample.kind="Rounding")
# if using R 3.5 or earlier, use `set.seed(1)` instead
test_index2 <- createDataPartition(y = edx$rating, times = 1, p = 0.1, list = FALSE)
train_set <- edx[-test_index2,]
test_set <- edx[test_index2,]

我必须根据此函数计算预测评级的 RMSE:

#Define the function that calculates RMSE
RMSE <- function(true_ratings, predicted_ratings){
sqrt(mean((true_ratings - predicted_ratings)^2))
}

首先,我使用最简单的模型执行此操作,如下所示:

#Get mu_hat with the simplest model
mu_hat <- mean(train_set$rating)
mu_hat
[1] 3.512457

#Predict the known ratings with mu_hat
naive_rmse <- RMSE(test_set$rating, mu_hat)
naive_rmse
[1] 1.060056

#Create the results table
rmse_results <- tibble(method = "Simple average model", RMSE = naive_rmse)

接下来,我需要使用一个对电影效果进行惩罚的模型:

#Penalize movie effects and adjust the mean
b_i <- train_set %>% group_by(movieId) %>%
summarize(b_i = sum(rating - mu_hat)/(n() + 1))

#Save and plot the movie averages with the movie effect model
movie_effect_avgs <- train_set %>% group_by(movieId) %>% summarize(b_i = mean(rating - mu_hat))
movie_effect_avgs %>% qplot(b_i, geom = "histogram", bins = 10, data = ., color = I("azure3"), xlab = "Number of movies with b_i", ylab = "Number of movies")

#Save the new predicted ratings
predicted_ratings <- mu_hat + test_set %>% left_join(movie_effect_avgs, by='movieId') %>%
pull(b_i)

预测评分的第一行如下所示:

predicted_ratings
   [1] 3.130763 4.221028 3.742687 3.429529 3.999581 4.278903 3.167818 3.332393

我的问题出现在这里:

#Calculate the RMSE for the movie effect model
movie_effect_rmse <- RMSE(predicted_ratings, test_set$rating)
movie_effect_rmse
[1] NA

它只是说“NA”,而不是给我第二个模型的 RMSE 值,但我无法理解我的代码有什么问题或为什么 RMSE 函数不起作用。我怀疑它与测试/训练集的结构有关。如果我按照上述完全相同的步骤进行操作,则代码可以工作,但相反,我从进一步拆分为测试和训练(称为 edx)之前获取数据集,在该数据集上进行训练并直接在验证集上使用它。但是,根据项目的说明,这是不允许的。

关于什么可能是错的任何建议?

4

1 回答 1

1

只是将其编码为答案。产生的函数这样NA做是因为一些输入已经是NA.

对于大多数随意的指标,如 sum、mean、sd 等。只需添加na.rm = TRUE作为函数参数即可。

在你的情况下

mean(x,na.rm= TRUE)
于 2019-11-08T09:05:31.273 回答