1

我在 PySpark 中有一个考拉数据框。我想计算按列的标准差。我试过做:

df2['x_std'] = df2[['x_1',
'x_2',
'x_3',
'x_4',
'x_5',
'x_6',
'x_7',
'x_8',
'x_9',
'x_10','x_11',
'x_12']].std(axis = 1) 

我收到以下错误:

TypeError: 'DataFrame' object does not support item assignment

我也在做类似的事情:

d1 = df2[['x_1',
'x_2',
'x_3',
'x_4',
'x_5',
'x_6',
'x_7',
'x_8',
'x_9',
'x_10','x_11',
'x_12']].std(axis = 1) 

df2['x_std'] = d1 # d1 is a Koalas Series that should get assigned to the new column.

这样做时出现此错误:

Cannot combine column argument because it comes from a different dataframe

对考拉来说是全新的。任何人都可以提供一些想法吗?谢谢。

4

1 回答 1

0

您可以将选项设置"compute.ops_on_diff_frames"True,然后执行操作。

import databricks.koalas as ks

ks.set_option("compute.ops_on_diff_frames", True)

kdf = ks.DataFrame(
    {'a': [1, 2, 3, 4, 5, 6],
     'b': [2, 1, 7, 4, 2, 3],
     'c': [3, 7, 1, 4, 6, 5],
     'd': [4, 2, 3, 4, 3, 8],},)

kdf['dev'] = kdf[['a', 'b', 'c', 'd']].std(axis=1)
print (kdf)

   a  b  c  d       dev
0  1  2  3  4  1.241909
5  6  3  5  8  2.363684
1  2  1  7  2  2.348840
3  4  4  4  4  1.788854
2  3  7  1  3  2.223378
4  5  2  6  3  1.856200

不确定这是一种好习惯,因为默认情况下不允许这样做。

于 2020-02-14T20:10:24.563 回答