我正在尝试采用函数的梯度,在该函数中我单独分配 numpy 数组元素(将局部力分配给 FEA 中的全局力向量),但这似乎破坏了 Autograd——如果我使用np.zeros
全局数组我得到ValueError: setting an array element with a sequence
, 而如果我使用np.empty
我得到NotImplementedError: VJP of empty_like wrt argnums (0,) not defined
.
例子:
import autograd.numpy as np
from autograd import jacobian, grad
def test(input):
a = np.empty_like(input)
a[:] = input[:]
grad(test)(np.array([0.]))
给出错误:
C:\Miniconda3\python.exe C:/Users/JoshuaF/Desktop/gripper/softDrone/bug_test.py
Traceback (most recent call last):
File "C:\Miniconda3\lib\site-packages\autograd\core.py", line 31, in __init__
vjpmaker = primitive_vjps[fun]
KeyError: <function primitive.<locals>.f_wrapped at 0x000001AB1D0AA8C8>
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:/Users/JoshuaF/Desktop/gripper/softDrone/bug_test.py", line 8, in <module>
grad(test)(np.array([0.]))
File "C:\Miniconda3\lib\site-packages\autograd\wrap_util.py", line 20, in nary_f
return unary_operator(unary_f, x, *nary_op_args, **nary_op_kwargs)
File "C:\Miniconda3\lib\site-packages\autograd\differential_operators.py", line 25, in grad
vjp, ans = _make_vjp(fun, x)
File "C:\Miniconda3\lib\site-packages\autograd\core.py", line 10, in make_vjp
end_value, end_node = trace(start_node, fun, x)
File "C:\Miniconda3\lib\site-packages\autograd\tracer.py", line 10, in trace
end_box = fun(start_box)
File "C:\Miniconda3\lib\site-packages\autograd\wrap_util.py", line 15, in unary_f
return fun(*subargs, **kwargs)
File "C:/Users/JoshuaF/Desktop/gripper/softDrone/bug_test.py", line 5, in test
a = np.empty_like(input)
File "C:\Miniconda3\lib\site-packages\autograd\tracer.py", line 45, in f_wrapped
node = node_constructor(ans, f_wrapped, argvals, kwargs, argnums, parents)
File "C:\Miniconda3\lib\site-packages\autograd\core.py", line 35, in __init__
.format(fun_name, parent_argnums))
NotImplementedError: VJP of empty_like wrt argnums (0,) not defined
有没有办法在按元素组装的 numpy 数组上使用 Autograd?