为了检查舍入问题(仅在舍入到最近或偶数模式下),binary32
为了便于说明,我从头开始构建了 IEEE-754 部门的仿真代码。一旦开始工作,我就机械地将代码转换为 IEEE-754binary64
部门的仿真代码。两者的 ISO-C99 代码,包括我的测试框架工作,如下所示。该方法与 asker 算法略有不同,因为它在 Q1.63 算术中执行中间计算以获得最大精度,并使用 8 位或 16 位条目表来进行倒数的起始近似。
舍入步骤基本上是从被除数中减去原始商和除数的乘积以形成余数rem_raw
。它还形成rem_inc
将商增加 1 ulp 所产生的余数。通过构造,我们知道原始商足够准确,以至于它或其增量值是正确舍入的结果。余数可以是正数、负数或负/正混合。幅度较小的余数对应于正确舍入的商。
舍入正态和次正态之间存在的唯一区别(除了后者固有的非规范化步骤)是正常结果不会出现平局,而亚正态结果可能会出现平局。参见,例如,
Miloš D. Ercegovac 和 Tomás Lang,“数字算术”,Morgan Kaufman,2004 年,p。452
在定点算术中计算时,原始商和除数的乘积是双倍乘积。为了在不丢失任何位的情况下精确计算余数,我们因此动态更改定点表示以提供额外的小数位。为此,被除数左移了适当的位数。但是因为我们从算法的构造中知道初步商非常接近真实结果,我们知道在从被除数中减去所有高位位将取消。所以我们只需要计算并减去低阶乘积位来计算两个余数。
因为在 [1,2) 中的两个值的除会导致 (0.5, 2) 中的商,所以商的计算可能涉及归一化步骤以返回区间 [1,2),并伴随着指数更正。在将被除数以及商和除数的乘积进行减法运算时,我们需要考虑到这一点,请参见normalization_shift
下面的代码。
由于下面的代码具有探索性,因此在编写时并未考虑到极端优化。可以进行各种调整,例如用特定于平台的内在函数或内联汇编替换可移植代码。同样,下面的基本测试框架可以通过结合各种技术来从文献中生成难以圆整的案例来得到加强。例如,我过去曾使用以下论文附带的除法测试向量:
Brigitte Verdonk、Annie Cuyt 和 Dennis Verschaeren。“用于测试浮点算术 I:基本运算、平方根和余数的与精度和范围无关的工具。” ACM 数学软件交易,卷。27,第 1 期,2001 年 3 月,第 92-118 页。
我的测试框架的基于模式的测试向量受到以下出版物的启发:
NL Schryer,“计算机浮点单元的测试”。计算机科学技术报告编号 89,AT&T 贝尔实验室,新泽西州默里山(1981 年)。
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <limits.h>
#define TEST_FP32_DIV (0) /* 0: binary64 division; 1: binary32 division */
#define PURELY_RANDOM (1)
#define PATTERN_BASED (2)
#define TEST_MODE (PATTERN_BASED)
#define ITO_TAKAGI_YAJIMA (1) /* more accurate recip. starting approximation */
uint32_t float_as_uint32 (float a)
{
uint32_t r;
memcpy (&r, &a, sizeof r);
return r;
}
float uint32_as_float (uint32_t a)
{
float r;
memcpy (&r, &a, sizeof r);
return r;
}
uint32_t umul32hi (uint32_t a, uint32_t b)
{
return (uint32_t)(((uint64_t)a*b) >> 32);
}
int clz32 (uint32_t a)
{
uint32_t r = 32;
if (a >= 0x00010000) { a >>= 16; r -= 16; }
if (a >= 0x00000100) { a >>= 8; r -= 8; }
if (a >= 0x00000010) { a >>= 4; r -= 4; }
if (a >= 0x00000004) { a >>= 2; r -= 2; }
r -= a - (a & (a >> 1));
return r;
}
#if ITO_TAKAGI_YAJIMA
/* Masayuki Ito, Naofumi Takagi, Shuzo Yajima, "Efficient Initial Approximation
for Multiplicative Division and Square Root by a Multiplication with Operand
Modification". IEEE Transactions on Computers, Vol. 46, No. 4, April 1997,
pp. 495-498.
*/
#define LOG2_TAB_ENTRIES (6)
#define TAB_ENTRIES (1 << LOG2_TAB_ENTRIES)
#define TAB_ENTRY_BITS (16)
/* approx. err. ~= 5.146e-5 */
const uint16_t b1tab [64] =
{
0xfc0f, 0xf46b, 0xed20, 0xe626, 0xdf7a, 0xd918, 0xd2fa, 0xcd1e,
0xc77f, 0xc21b, 0xbcee, 0xb7f5, 0xb32e, 0xae96, 0xaa2a, 0xa5e9,
0xa1d1, 0x9dde, 0x9a11, 0x9665, 0x92dc, 0x8f71, 0x8c25, 0x88f6,
0x85e2, 0x82e8, 0x8008, 0x7d3f, 0x7a8e, 0x77f2, 0x756c, 0x72f9,
0x709b, 0x6e4e, 0x6c14, 0x69eb, 0x67d2, 0x65c8, 0x63cf, 0x61e3,
0x6006, 0x5e36, 0x5c73, 0x5abd, 0x5913, 0x5774, 0x55e1, 0x5458,
0x52da, 0x5166, 0x4ffc, 0x4e9b, 0x4d43, 0x4bf3, 0x4aad, 0x496e,
0x4837, 0x4708, 0x45e0, 0x44c0, 0x43a6, 0x4293, 0x4187, 0x4081
};
#else // ITO_TAKAGI_YAJIMA
#define LOG2_TAB_ENTRIES (7)
#define TAB_ENTRIES (1 << LOG2_TAB_ENTRIES)
#define TAB_ENTRY_BITS (8)
/* approx. err. ~= 5.585e-3 */
const uint8_t rcp_tab [TAB_ENTRIES] =
{
0xff, 0xfd, 0xfb, 0xf9, 0xf7, 0xf5, 0xf4, 0xf2,
0xf0, 0xee, 0xed, 0xeb, 0xe9, 0xe8, 0xe6, 0xe4,
0xe3, 0xe1, 0xe0, 0xde, 0xdd, 0xdb, 0xda, 0xd8,
0xd7, 0xd5, 0xd4, 0xd3, 0xd1, 0xd0, 0xcf, 0xcd,
0xcc, 0xcb, 0xca, 0xc8, 0xc7, 0xc6, 0xc5, 0xc4,
0xc2, 0xc1, 0xc0, 0xbf, 0xbe, 0xbd, 0xbc, 0xbb,
0xba, 0xb9, 0xb8, 0xb7, 0xb6, 0xb5, 0xb4, 0xb3,
0xb2, 0xb1, 0xb0, 0xaf, 0xae, 0xad, 0xac, 0xab,
0xaa, 0xa9, 0xa8, 0xa8, 0xa7, 0xa6, 0xa5, 0xa4,
0xa3, 0xa3, 0xa2, 0xa1, 0xa0, 0x9f, 0x9f, 0x9e,
0x9d, 0x9c, 0x9c, 0x9b, 0x9a, 0x99, 0x99, 0x98,
0x97, 0x97, 0x96, 0x95, 0x95, 0x94, 0x93, 0x93,
0x92, 0x91, 0x91, 0x90, 0x8f, 0x8f, 0x8e, 0x8e,
0x8d, 0x8c, 0x8c, 0x8b, 0x8b, 0x8a, 0x89, 0x89,
0x88, 0x88, 0x87, 0x87, 0x86, 0x85, 0x85, 0x84,
0x84, 0x83, 0x83, 0x82, 0x82, 0x81, 0x81, 0x80
};
#endif // ITO_TAKAGI_YAJIMA
#define FP32_MANT_BITS (23)
#define FP32_EXPO_BITS (8)
#define FP32_SIGN_MASK (0x80000000u)
#define FP32_MANT_MASK (0x007fffffu)
#define FP32_EXPO_MASK (0x7f800000u)
#define FP32_MAX_EXPO (0xff)
#define FP32_EXPO_BIAS (127)
#define FP32_INFTY (0x7f800000u)
#define FP32_QNAN_BIT (0x00400000u)
#define FP32_QNAN_INDEFINITE (0xffc00000u)
#define FP32_MANT_INT_BIT (0x00800000u)
uint32_t fp32_div_core (uint32_t x, uint32_t y)
{
uint32_t expo_x, expo_y, expo_r, sign_r;
uint32_t abs_x, abs_y, f, l, p, r, z, s;
int x_is_zero, y_is_zero, normalization_shift;
expo_x = (x & FP32_EXPO_MASK) >> FP32_MANT_BITS;
expo_y = (y & FP32_EXPO_MASK) >> FP32_MANT_BITS;
sign_r = (x ^ y) & FP32_SIGN_MASK;
abs_x = x & ~FP32_SIGN_MASK;
abs_y = y & ~FP32_SIGN_MASK;
x_is_zero = (abs_x == 0);
y_is_zero = (abs_y == 0);
if ((expo_x == FP32_MAX_EXPO) || (expo_y == FP32_MAX_EXPO) ||
x_is_zero || y_is_zero) {
int x_is_nan = (abs_x > FP32_INFTY);
int x_is_inf = (abs_x == FP32_INFTY);
int y_is_nan = (abs_y > FP32_INFTY);
int y_is_inf = (abs_y == FP32_INFTY);
if (x_is_nan) {
r = x | FP32_QNAN_BIT;
} else if (y_is_nan) {
r = y | FP32_QNAN_BIT;
} else if ((x_is_zero && y_is_zero) || (x_is_inf && y_is_inf)) {
r = FP32_QNAN_INDEFINITE;
} else if (x_is_zero || y_is_inf) {
r = sign_r;
} else if (y_is_zero || x_is_inf) {
r = sign_r | FP32_INFTY;
}
} else {
/* normalize any subnormals */
if (expo_x == 0) {
s = clz32 (abs_x) - FP32_EXPO_BITS;
x = x << s;
expo_x = expo_x - (s - 1);
}
if (expo_y == 0) {
s = clz32 (abs_y) - FP32_EXPO_BITS;
y = y << s;
expo_y = expo_y - (s - 1);
}
//
expo_r = expo_x - expo_y + FP32_EXPO_BIAS;
/* extract mantissas */
x = x & FP32_MANT_MASK;
y = y & FP32_MANT_MASK;
#if ITO_TAKAGI_YAJIMA
/* initial approx based on 6 most significant stored mantissa bits */
r = b1tab [y >> (FP32_MANT_BITS - LOG2_TAB_ENTRIES)];
/* make implicit integer bit of mantissa explicit */
x = x | FP32_MANT_INT_BIT;
y = y | FP32_MANT_INT_BIT;
r = r * ((y ^ ((1u << (FP32_MANT_BITS - LOG2_TAB_ENTRIES)) - 1)) >>
(FP32_MANT_BITS + 1 + TAB_ENTRY_BITS - 32));
/* pre-scale y for more efficient fixed-point computation */
z = y << FP32_EXPO_BITS;
#else // ITO_TAKAGI_YAJIMA
/* initial approx based on 7 most significant stored mantissa bits */
r = rcp_tab [y >> (FP32_MANT_BITS - LOG2_TAB_ENTRIES)];
/* make implicit integer bit of mantissa explicit */
x = x | FP32_MANT_INT_BIT;
y = y | FP32_MANT_INT_BIT;
/* pre-scale y for more efficient fixed-point computation */
z = y << FP32_EXPO_BITS;
/* first NR iteration r1 = 2*r0-y*r0*r0 */
f = r * r;
p = umul32hi (z, f << (32 - 2 * TAB_ENTRY_BITS));
r = (r << (32 - TAB_ENTRY_BITS)) - p;
#endif // ITO_TAKAGI_YAJIMA
/* second NR iteration: r2 = r1*(2-y*r1) */
p = umul32hi (z, r << 1);
f = 0u - p;
r = umul32hi (f, r << 1);
/* compute quotient as wide product x*(1/y) = x*r */
l = x * (r << 1);
r = umul32hi (x, r << 1);
/* normalize mantissa to be in [1,2) */
normalization_shift = (r & FP32_MANT_INT_BIT) == 0;
expo_r -= normalization_shift;
r = (r << normalization_shift) | ((l >> 1) >> (32 - 1 - normalization_shift));
if ((expo_r > 0) && (expo_r < FP32_MAX_EXPO)) { /* result is normal */
int32_t rem_raw, rem_inc, inc;
/* align x with product y*quotient */
x = x << (FP32_MANT_BITS + normalization_shift + 1);
/* compute product y*quotient */
y = y << 1;
p = y * r;
/* compute x - y*quotient, for both raw and incremented quotient */
rem_raw = x - p;
rem_inc = rem_raw - y;
/* round to nearest: tie case _cannot_ occur */
inc = abs (rem_inc) < abs (rem_raw);
/* build final results from sign, exponent, mantissa */
r = sign_r | (((expo_r - 1) << FP32_MANT_BITS) + r + inc);
} else if ((int)expo_r >= FP32_MAX_EXPO) { /* result overflowed */
r = sign_r | FP32_INFTY;
} else { /* result underflowed */
int denorm_shift = 1 - expo_r;
if (denorm_shift > (FP32_MANT_BITS + 1)) { /* massive underflow */
r = sign_r;
} else {
int32_t rem_raw, rem_inc, inc;
/* denormalize quotient */
r = r >> denorm_shift;
/* align x with product y*quotient */
x = x << (FP32_MANT_BITS + normalization_shift + 1 - denorm_shift);
/* compute product y*quotient */
y = y << 1;
p = y * r;
/* compute x - y*quotient, for both raw & incremented quotient*/
rem_raw = x - p;
rem_inc = rem_raw - y;
/* round to nearest or even: tie case _can_ occur */
inc = ((abs (rem_inc) < abs (rem_raw)) ||
(abs (rem_inc) == abs (rem_raw) && (r & 1)));
/* build final result from sign and mantissa */
r = sign_r | (r + inc);
}
}
}
return r;
}
float fp32_div (float a, float b)
{
uint32_t x, y, r;
x = float_as_uint32 (a);
y = float_as_uint32 (b);
r = fp32_div_core (x, y);
return uint32_as_float (r);
}
uint64_t double_as_uint64 (double a)
{
uint64_t r;
memcpy (&r, &a, sizeof r);
return r;
}
double uint64_as_double (uint64_t a)
{
double r;
memcpy (&r, &a, sizeof r);
return r;
}
uint64_t umul64hi (uint64_t a, uint64_t b)
{
uint64_t a_lo = (uint64_t)(uint32_t)a;
uint64_t a_hi = a >> 32;
uint64_t b_lo = (uint64_t)(uint32_t)b;
uint64_t b_hi = b >> 32;
uint64_t p0 = a_lo * b_lo;
uint64_t p1 = a_lo * b_hi;
uint64_t p2 = a_hi * b_lo;
uint64_t p3 = a_hi * b_hi;
uint32_t cy = (uint32_t)(((p0 >> 32) + (uint32_t)p1 + (uint32_t)p2) >> 32);
return p3 + (p1 >> 32) + (p2 >> 32) + cy;
}
int clz64 (uint64_t a)
{
uint64_t r = 64;
if (a >= 0x100000000ULL) { a >>= 32; r -= 32; }
if (a >= 0x000010000ULL) { a >>= 16; r -= 16; }
if (a >= 0x000000100ULL) { a >>= 8; r -= 8; }
if (a >= 0x000000010ULL) { a >>= 4; r -= 4; }
if (a >= 0x000000004ULL) { a >>= 2; r -= 2; }
r -= a - (a & (a >> 1));
return r;
}
#define FP64_MANT_BITS (52)
#define FP64_EXPO_BITS (11)
#define FP64_EXPO_MASK (0x7ff0000000000000ULL)
#define FP64_SIGN_MASK (0x8000000000000000ULL)
#define FP64_MANT_MASK (0x000fffffffffffffULL)
#define FP64_MAX_EXPO (0x7ff)
#define FP64_EXPO_BIAS (1023)
#define FP64_INFTY (0x7ff0000000000000ULL)
#define FP64_QNAN_BIT (0x0008000000000000ULL)
#define FP64_QNAN_INDEFINITE (0xfff8000000000000ULL)
#define FP64_MANT_INT_BIT (0x0010000000000000ULL)
uint64_t fp64_div_core (uint64_t x, uint64_t y)
{
uint64_t expo_x, expo_y, expo_r, sign_r;
uint64_t abs_x, abs_y, f, l, p, r, z, s;
int x_is_zero, y_is_zero, normalization_shift;
expo_x = (x & FP64_EXPO_MASK) >> FP64_MANT_BITS;
expo_y = (y & FP64_EXPO_MASK) >> FP64_MANT_BITS;
sign_r = (x ^ y) & FP64_SIGN_MASK;
abs_x = x & ~FP64_SIGN_MASK;
abs_y = y & ~FP64_SIGN_MASK;
x_is_zero = (abs_x == 0);
y_is_zero = (abs_y == 0);
if ((expo_x == FP64_MAX_EXPO) || (expo_y == FP64_MAX_EXPO) ||
x_is_zero || y_is_zero) {
int x_is_nan = (abs_x > FP64_INFTY);
int x_is_inf = (abs_x == FP64_INFTY);
int y_is_nan = (abs_y > FP64_INFTY);
int y_is_inf = (abs_y == FP64_INFTY);
if (x_is_nan) {
r = x | FP64_QNAN_BIT;
} else if (y_is_nan) {
r = y | FP64_QNAN_BIT;
} else if ((x_is_zero && y_is_zero) || (x_is_inf && y_is_inf)) {
r = FP64_QNAN_INDEFINITE;
} else if (x_is_zero || y_is_inf) {
r = sign_r;
} else if (y_is_zero || x_is_inf) {
r = sign_r | FP64_INFTY;
}
} else {
/* normalize any subnormals */
if (expo_x == 0) {
s = clz64 (abs_x) - FP64_EXPO_BITS;
x = x << s;
expo_x = expo_x - (s - 1);
}
if (expo_y == 0) {
s = clz64 (abs_y) - FP64_EXPO_BITS;
y = y << s;
expo_y = expo_y - (s - 1);
}
//
expo_r = expo_x - expo_y + FP64_EXPO_BIAS;
/* extract mantissas */
x = x & FP64_MANT_MASK;
y = y & FP64_MANT_MASK;
#if ITO_TAKAGI_YAJIMA
/* initial approx based on 6 most significant stored mantissa bits */
r = b1tab [y >> (FP64_MANT_BITS - LOG2_TAB_ENTRIES)];
/* make implicit integer bit of mantissa explicit */
x = x | FP64_MANT_INT_BIT;
y = y | FP64_MANT_INT_BIT;
r = r * ((y ^ ((1ULL << (FP64_MANT_BITS - LOG2_TAB_ENTRIES)) - 1)) >>
(FP64_MANT_BITS + 1 + TAB_ENTRY_BITS - 64));
/* pre-scale y for more efficient fixed-point computation */
z = y << FP64_EXPO_BITS;
#else // ITO_TAKAGI_YAJIMA
/* initial approx based on 7 most significant stored mantissa bits */
r = rcp_tab [y >> (FP64_MANT_BITS - LOG2_TAB_ENTRIES)];
/* make implicit integer bit of mantissa explicit */
x = x | FP64_MANT_INT_BIT;
y = y | FP64_MANT_INT_BIT;
/* pre-scale y for more efficient fixed-point computation */
z = y << FP64_EXPO_BITS;
/* first NR iteration r1 = 2*r0-y*r0*r0 */
f = r * r;
p = umul64hi (z, f << (64 - 2 * TAB_ENTRY_BITS));
r = (r << (64 - TAB_ENTRY_BITS)) - p;
#endif // ITO_TAKAGI_YAJIMA
/* second NR iteration: r2 = r1*(2-y*r1) */
p = umul64hi (z, r << 1);
f = 0u - p;
r = umul64hi (f, r << 1);
/* third NR iteration: r3 = r2*(2-y*r2) */
p = umul64hi (z, r << 1);
f = 0u - p;
r = umul64hi (f, r << 1);
/* compute quotient as wide product x*(1/y) = x*r */
l = x * (r << 1);
r = umul64hi (x, r << 1);
/* normalize mantissa to be in [1,2) */
normalization_shift = (r & FP64_MANT_INT_BIT) == 0;
expo_r -= normalization_shift;
r = (r << normalization_shift) | ((l >> 1) >> (64 - 1 - normalization_shift));
if ((expo_r > 0) && (expo_r < FP64_MAX_EXPO)) { /* result is normal */
int64_t rem_raw, rem_inc;
int inc;
/* align x with product y*quotient */
x = x << (FP64_MANT_BITS + 1 + normalization_shift);
/* compute product y*quotient */
y = y << 1;
p = y * r;
/* compute x - y*quotient, for both raw and incremented quotient */
rem_raw = x - p;
rem_inc = rem_raw - y;
/* round to nearest: tie case _cannot_ occur */
inc = llabs (rem_inc) < llabs (rem_raw);
/* build final results from sign, exponent, mantissa */
r = sign_r | (((expo_r - 1) << FP64_MANT_BITS) + r + inc);
} else if ((int)expo_r >= FP64_MAX_EXPO) { /* result overflowed */
r = sign_r | FP64_INFTY;
} else { /* result underflowed */
int denorm_shift = 1 - expo_r;
if (denorm_shift > (FP64_MANT_BITS + 1)) { /* massive underflow */
r = sign_r;
} else {
int64_t rem_raw, rem_inc;
int inc;
/* denormalize quotient */
r = r >> denorm_shift;
/* align x with product y*quotient */
x = x << (FP64_MANT_BITS + 1 + normalization_shift - denorm_shift);
/* compute product y*quotient */
y = y << 1;
p = y * r;
/* compute x - y*quotient, for both raw & incremented quotient*/
rem_raw = x - p;
rem_inc = rem_raw - y;
/* round to nearest or even: tie case _can_ occur */
inc = ((llabs (rem_inc) < llabs (rem_raw)) ||
(llabs (rem_inc) == llabs (rem_raw) && (r & 1)));
/* build final result from sign and mantissa */
r = sign_r | (r + inc);
}
}
}
return r;
}
double fp64_div (double a, double b)
{
uint64_t x, y, r;
x = double_as_uint64 (a);
y = double_as_uint64 (b);
r = fp64_div_core (x, y);
return uint64_as_double (r);
}
#if TEST_FP32_DIV
// Fixes via: Greg Rose, KISS: A Bit Too Simple. http://eprint.iacr.org/2011/007
static uint32_t kiss_z=362436069,kiss_w=521288629, kiss_jsr=362436069,kiss_jcong=123456789;
#define znew (kiss_z=36969*(kiss_z&0xffff)+(kiss_z>>16))
#define wnew (kiss_w=18000*(kiss_w&0xffff)+(kiss_w>>16))
#define MWC ((znew<<16)+wnew)
#define SHR3 (kiss_jsr^=(kiss_jsr<<13),kiss_jsr^=(kiss_jsr>>17),kiss_jsr^=(kiss_jsr<<5))
#define CONG (kiss_jcong=69069*kiss_jcong+13579)
#define KISS ((MWC^CONG)+SHR3)
uint32_t v[8192];
int main (void)
{
uint64_t count = 0;
float a, b, res, ref;
uint32_t ires, iref, diff;
uint32_t i, j, patterns, idx = 0, nbrBits = sizeof (v[0]) * CHAR_BIT;
printf ("testing fp32 division\n");
/* pattern class 1: 2**i */
for (i = 0; i < nbrBits; i++) {
v [idx] = ((uint32_t)1 << i);
idx++;
}
/* pattern class 2: 2**i-1 */
for (i = 0; i < nbrBits; i++) {
v [idx] = (((uint32_t)1 << i) - 1);
idx++;
}
/* pattern class 3: 2**i+1 */
for (i = 0; i < nbrBits; i++) {
v [idx] = (((uint32_t)1 << i) + 1);
idx++;
}
/* pattern class 4: 2**i + 2**j */
for (i = 0; i < nbrBits; i++) {
for (j = 0; j < nbrBits; j++) {
v [idx] = (((uint32_t)1 << i) + ((uint32_t)1 << j));
idx++;
}
}
/* pattern class 5: 2**i - 2**j */
for (i = 0; i < nbrBits; i++) {
for (j = 0; j < nbrBits; j++) {
v [idx] = (((uint32_t)1 << i) - ((uint32_t)1 << j));
idx++;
}
}
/* pattern class 6: MAX_UINT/(2**i+1) rep. blocks of i zeros an i ones */
for (i = 0; i < nbrBits; i++) {
v [idx] = ((~(uint32_t)0) / (((uint32_t)1 << i) + 1));
idx++;
}
patterns = idx;
/* pattern class 6: one's complement of pattern classes 1 through 5 */
for (i = 0; i < patterns; i++) {
v [idx] = ~v [i];
idx++;
}
/* pattern class 7: two's complement of pattern classes 1 through 5 */
for (i = 0; i < patterns; i++) {
v [idx] = ~v [i] + 1;
idx++;
}
patterns = idx;
#if ITO_TAKAGI_YAJIMA
printf ("initial reciprocal based on method of Ito, Takagi, and Yajima\n");
#else
printf ("initial reciprocal based on straight 8-bit table\n");
#endif
#if TEST_MODE == PURELY_RANDOM
printf ("using purely random test vectors\n");
#elif TEST_MODE == PATTERN_BASED
printf ("using pattern-based test vectors\n");
printf ("#patterns = %u\n", patterns);
#endif // TEST_MODE
do {
#if TEST_MODE == PURELY_RANDOM
a = uint32_as_float (KISS);
b = uint32_as_float (KISS);
#elif TEST_MODE == PATTERN_BASED
a = uint32_as_float ((v [KISS % patterns] & FP32_MANT_MASK) | (KISS & ~FP32_MANT_MASK));
b = uint32_as_float ((v [KISS % patterns] & FP32_MANT_MASK) | (KISS & ~FP32_MANT_MASK));
#endif // TEST_MODE
ref = a / b;
res = fp32_div (a, b);
ires = float_as_uint32 (res);
iref = float_as_uint32 (ref);
diff = (ires > iref) ? (ires - iref) : (iref - ires);
if (diff) {
printf ("a=% 15.6a b=% 15.6a res=% 15.6a ref=% 15.6a\n", a, b, res, ref);
return EXIT_FAILURE;
}
count++;
if ((count & 0xffffff) == 0) {
printf ("\r%llu", count);
}
} while (1);
return EXIT_SUCCESS;
}
#else /* TEST_FP32_DIV */
/*
https://groups.google.com/forum/#!original/comp.lang.c/qFv18ql_WlU/IK8KGZZFJx4J
*/
static uint64_t kiss64_x = 1234567890987654321ULL;
static uint64_t kiss64_c = 123456123456123456ULL;
static uint64_t kiss64_y = 362436362436362436ULL;
static uint64_t kiss64_z = 1066149217761810ULL;
static uint64_t kiss64_t;
#define MWC64 (kiss64_t = (kiss64_x << 58) + kiss64_c, \
kiss64_c = (kiss64_x >> 6), kiss64_x += kiss64_t, \
kiss64_c += (kiss64_x < kiss64_t), kiss64_x)
#define XSH64 (kiss64_y ^= (kiss64_y << 13), kiss64_y ^= (kiss64_y >> 17), \
kiss64_y ^= (kiss64_y << 43))
#define CNG64 (kiss64_z = 6906969069ULL * kiss64_z + 1234567ULL)
#define KISS64 (MWC64 + XSH64 + CNG64)
uint64_t v[32768];
int main (void)
{
uint64_t ires, iref, diff, count = 0;
double a, b, res, ref;
uint32_t i, j, patterns, idx = 0, nbrBits = sizeof (v[0]) * CHAR_BIT;
printf ("testing fp64 division\n");
/* pattern class 1: 2**i */
for (i = 0; i < nbrBits; i++) {
v [idx] = ((uint64_t)1 << i);
idx++;
}
/* pattern class 2: 2**i-1 */
for (i = 0; i < nbrBits; i++) {
v [idx] = (((uint64_t)1 << i) - 1);
idx++;
}
/* pattern class 3: 2**i+1 */
for (i = 0; i < nbrBits; i++) {
v [idx] = (((uint64_t)1 << i) + 1);
idx++;
}
/* pattern class 4: 2**i + 2**j */
for (i = 0; i < nbrBits; i++) {
for (j = 0; j < nbrBits; j++) {
v [idx] = (((uint64_t)1 << i) + ((uint64_t)1 << j));
idx++;
}
}
/* pattern class 5: 2**i - 2**j */
for (i = 0; i < nbrBits; i++) {
for (j = 0; j < nbrBits; j++) {
v [idx] = (((uint64_t)1 << i) - ((uint64_t)1 << j));
idx++;
}
}
/* pattern class 6: MAX_UINT/(2**i+1) rep. blocks of i zeros an i ones */
for (i = 0; i < nbrBits; i++) {
v [idx] = ((~(uint64_t)0) / (((uint64_t)1 << i) + 1));
idx++;
}
patterns = idx;
/* pattern class 6: one's complement of pattern classes 1 through 5 */
for (i = 0; i < patterns; i++) {
v [idx] = ~v [i];
idx++;
}
/* pattern class 7: two's complement of pattern classes 1 through 5 */
for (i = 0; i < patterns; i++) {
v [idx] = ~v [i] + 1;
idx++;
}
patterns = idx;
#if ITO_TAKAGI_YAJIMA
printf ("initial reciprocal based on method of Ito, Takagi, and Yajima\n");
#else
printf ("initial reciprocal based on straight 8-bit table\n");
#endif
#if TEST_MODE == PURELY_RANDOM
printf ("using purely random test vectors\n");
#elif TEST_MODE == PATTERN_BASED
printf ("using pattern-based test vectors\n");
printf ("#patterns = %u\n", patterns);
#endif // TEST_MODE
do {
#if TEST_MODE == PURELY_RANDOM
a = uint64_as_double (KISS64);
b = uint64_as_double (KISS64);
#elif TEST_MODE == PATTERN_BASED
a = uint64_as_double ((v [KISS64 % patterns] & FP64_MANT_MASK) | (KISS64 & ~FP64_MANT_MASK));
b = uint64_as_double ((v [KISS64 % patterns] & FP64_MANT_MASK) | (KISS64 & ~FP64_MANT_MASK));
#endif // TEST_MODE
ref = a / b;
res = fp64_div (a, b);
ires = double_as_uint64(res);
iref = double_as_uint64(ref);
diff = (ires > iref) ? (ires - iref) : (iref - ires);
if (diff) {
printf ("a=% 23.13a b=% 23.13a res=% 23.13a ref=% 23.13a\n", a, b, res, ref);
return EXIT_FAILURE;
}
count++;
if ((count & 0xffffff) == 0) {
printf ("\r%llu", count);
}
} while (1);
return EXIT_SUCCESS;
}
#endif /* TEST_FP32_DIV */