0

这段代码是否有变异、选择和交叉,就像原始的遗传算法一样。

既然这样,混合算法(即 PSO 与 GA)是使用原始 GA 的所有步骤还是跳过一些

他们。请告诉我。我对此很陌生,但仍在努力理解。谢谢你。

%%% 混合 GA 和 PSO 代码

function [gbest, gBestScore, all_scores] = QAP_PSO_GA(CreatePopFcn, FitnessFcn, UpdatePosition, ...
                                        nCity, nPlant, nPopSize, nIters)
    % Set algorithm parameters
    constant = 0.95;
    c1 = 1.5;       %1.4944;    %2;
    c2 = 1.5;       %1.4944;    %2;
    w = 0.792 * constant;
    % Allocate memory and initialize
    gBestScore = inf;
    all_scores = inf * ones(nPopSize, nIters);
    x = CreatePopFcn(nPopSize, nCity);
    v = zeros(nPopSize, nCity);
    pbest = x;
    % update lbest
    cost_p = inf * ones(1, nPopSize);  %feval(FUN, pbest');
    for i=1:nPopSize
        cost_p(i) = FitnessFcn(pbest(i, 1:nPlant));
    end
    lbest = update_lbest(cost_p, pbest, nPopSize);
    for iter = 1 : nIters    
        if mod(iter,1000) == 0
            parents = randperm(nPopSize);
            for i = 1:nPopSize
                x(i,:) = (pbest(i,:) + pbest(parents(i),:))/2;
%                v(i,:) = pbest(parents(i),:) - x(i,:);
%                v(i,:) = (v(i,:) + v(parents(i),:))/2;
            end

        else
            % Update velocity
            v = w*v + c1*rand(nPopSize,nCity).*(pbest-x) + c2*rand(nPopSize,nCity).*(lbest-x);
            % Update position
            x = x + v;
            x = UpdatePosition(x);
        end
        % Update pbest
        cost_x = inf * ones(1, nPopSize);
        for i=1:nPopSize
            cost_x(i) = FitnessFcn(x(i, 1:nPlant));
        end

        s = cost_x<cost_p;
        cost_p = (1-s).*cost_p + s.*cost_x;
        s = repmat(s',1,nCity);
        pbest = (1-s).*pbest + s.*x;
        % update lbest
        lbest = update_lbest(cost_p, pbest, nPopSize);
        % update global best
        all_scores(:, iter) = cost_x;
        [cost,index] = min(cost_p);
        if (cost < gBestScore) 
            gbest = pbest(index, :);
            gBestScore = cost;
        end

        % draw current fitness
        figure(1);
        plot(iter,min(cost_x),'cp','MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',8)
        hold on

        str=strcat('Best fitness: ', num2str(min(cost_x)));
        disp(str);

    end
end
% Function to update lbest
function lbest = update_lbest(cost_p, x, nPopSize)
    sm(1, 1)= cost_p(1, nPopSize);
    sm(1, 2:3)= cost_p(1, 1:2);
    [cost, index] = min(sm);
    if index==1
        lbest(1, :) = x(nPopSize, :);
    else
        lbest(1, :) = x(index-1, :);
    end
    for i = 2:nPopSize-1
        sm(1, 1:3)= cost_p(1, i-1:i+1);
        [cost, index] = min(sm);
        lbest(i, :) = x(i+index-2, :);
    end
    sm(1, 1:2)= cost_p(1, nPopSize-1:nPopSize);
    sm(1, 3)= cost_p(1, 1);
    [cost, index] = min(sm);
    if index==3
        lbest(nPopSize, :) = x(1, :);
    else
        lbest(nPopSize, :) = x(nPopSize-2+index, :);
    end    
end
4

1 回答 1

0

如果您是优化新手,我建议您先分别研究每种算法,然后您可以研究 GA 和 PSO 如何组合,尽管您必须具备基本的数学技能才能理解两种算法的运算符并进行测试这些算法的效率(这才是真正重要的)。

此代码块负责父选择和交叉:

            parents = randperm(nPopSize);
            for i = 1:nPopSize
                x(i,:) = (pbest(i,:) + pbest(parents(i),:))/2;
%                v(i,:) = pbest(parents(i),:) - x(i,:);
%                v(i,:) = (v(i,:) + v(parents(i),:))/2;
            end 

如何进行选择并不是很明显randperm(我对 Matlab 没有经验)。

这是负责更新每个粒子的速度和位置的代码:

        % Update velocity
        v = w*v + c1*rand(nPopSize,nCity).*(pbest-x) + c2*rand(nPopSize,nCity).*(lbest-x);
        % Update position
        x = x + v;
        x = UpdatePosition(x); 

这个版本的速度更新策略使用了所谓的 Interia-Weight W,这基本上意味着我们保留了每个粒子的速度历史(而不是完全重新计算它)。

值得一提的是,速度更新比交叉(每 1000 次迭代)更频繁。

于 2019-10-22T06:23:47.350 回答