我试图在我的逻辑中实现这个问题,以使用 epsilon = 1e-8 计算辛普森的方法自适应实现。以下是解释:
"""The approximate definite integral of function from a to b using Simpson's method.
This function is vectorized, it uses numpy array operations to calculate the approximation.
This is an adaptive implementation, the method starts out with N=2 intervals, and try
successive sizes of N (by doubling the size), until the desired precision, is reached.
This adaptive solution uses our improved approach/equation for Simpson's method, to avoid
unnecessary recalculations of the integrand function.
a, b - Scalar float values, the begin, and endpoints of the interval we are to
integrate the function over.
f - A vectorized function, should accept a numpy array of x values, and compute the
corresponding y values for all points according to some function.
epsilon - The desired precision to calculate the integral to. Default is 8 decimal places
of precision (1e-8)
returns - A tuple, (ival, error). A scalar float value, the approximated integral of
the function over the given interval, and a scaler float value of the
approximation error on the integral"""
以下是我的辛普森方法代码:
import pylab as pl
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
%matplotlib inline
def simpsons_adaptive_approximation(a, b, f, epsilon=1e-8):
N_prev = 2 # the previous number of slices
h_prev = (b - a) / N_prev # previous interval width
x = np.arange(a+h_prev, b, h_prev) # x locations of the previous interval
I_prev = h_prev * (0.5 * f(a) + 0.5 * f(b) + np.sum(f(x)))
# set up variables to adaptively iterate successively better approximations
N_cur = 4 # the current number of slices
I_cur = 0.0 # calculated in loop iteration
error = 1.0 # calculated in loop iteration
itr = 1 # keep track of the number of iterations we perform, for display/debug
h = (b-a)/float(epsilon)
I_cur = f(a) + f(b)
for i in frange(1,epsilon,1):
if(i%2 ==0):
I_cur = I_cur + (2*(f(a + i*h)))
else:
I_cur = I_cur + (4*(f(a + i*h)))
error = np.abs((1.0/3.0) * (I_cur - I_prev))
print("At iteration %d (N=%d), val=%0.16f prev=%0.16f error=%e" % (itr, N_cur, I_cur, I_prev, error) )
I_cur *= (h/3.0)
I_prev = I_cur
N_prev = N_cur
N_cur *= 2
itr += 1
return (I_cur, error)
以下是我的 f2(x) 函数:
def f2(x):
return x**4 - 2*x + 1
a = 0.0
b = 2.0
eps = 1e-10
(val, err) = simpsons_adaptive_approximation(a, b, f2, eps)
print( "Calculated value: %0.16f error: %e for an epsilon of: %e" % (val, err, eps) )
**结果只有 1 次迭代**:
At iteration 1 (N=4), val=14.0000000000000000 prev=7.0000000000000000 error=2.333333e+00
Calculated value: 93333333333.3333435058593750 error: 2.333333e+00 for an epsilon of: 1.000000e-10
和预期结果类似这样的多次迭代:
At iteration 1 (N=...), val=........ prev=...... error=1.552204e-10
At iteration n (N=...), val=........ prev=...... error=3.880511e-11
Calculated value: 0.0000000000 error: 3.880511e-11 for an epsilon of: 1.000000e-10
我想用一些理解来探索代码,因为这个问题已经被要求提供其他值作为 n 但不是数组