0

我正在尝试使用张量流概率层来创建多元正态分布的混合。当我为此使用 IndependentNormal 层时,它工作正常,但是当我使用 MultivariateNormalTriL 层时,我遇到了 event_shape 的问题。我将这些层与 MixtureSameFamily 层结合起来。以下代码应该很好地说明了我的问题,并且应该在 google colab 中工作:

import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow.keras as keras
tfpl = tfp.layers

print(tf.__version__)
# >> '1.15.0-rc3'
# but I get the same result with extra warnings in 1.14.0

print(tfp.__version__)
# >> '0.7.0'

print(tfpl.MultivariateNormalTriL(100)(
    keras.layers.Input(shape=tfpl.MultivariateNormalTriL.params_size(100))
))

# >> tfp.distributions.MultivariateNormalTriL("multivariate_normal_tri_l_4/MultivariateNormalTriL/MultivariateNormalTriL/", 
#    batch_shape=[?], event_shape=[100], dtype=float32)


print(tfpl.IndependentNormal((100,))(
    keras.layers.Input(shape=(tfpl.IndependentNormal.params_size(100),))
))

# >> tfp.distributions.Independent("Independentindependent_normal_2/IndependentNormal/Normal/", 
#    batch_shape=[?], event_shape=[100], dtype=float32)


print(tfpl.MixtureSameFamily(16, tfpl.MultivariateNormalTriL(100))(
    keras.layers.Input(shape=(16*tfpl.MultivariateNormalTriL.params_size(100),))
))

# >> tfp.distributions.MixtureSameFamily("mixture_same_family_2/MixtureSameFamily/MixtureSameFamily/", 
#    batch_shape=[?], event_shape=[?], dtype=float32)


print(tfpl.MixtureSameFamily(16, tfpl.IndependentNormal((100,)))(
    keras.layers.Input(shape=(16*tfpl.IndependentNormal.params_size(100,),))
))

# >> tfp.distributions.MixtureSameFamily("mixture_same_family_3/MixtureSameFamily/MixtureSameFamily/", 
#    batch_shape=[?], event_shape=[100], dtype=float32)

尽管 MultivariateNormalTriL 和 IndependentNormal 具有相同的 batch_shape 和 event_shape,但将它们与 MixtureSameFamily 组合会导致不同的事件形状。

所以我的问题是:为什么它们会导致不同的事件形状,以及如何为具有不同(不一定是对角)协方差矩阵和 event_shape=[100] 的多元正态分布混合获得一个层?

编辑:张量流概率版本 0.8 也是如此

4

1 回答 1

0

我误解了 MixtureSameFamily 层是如何工作的,所以在阅读了所有相关层的代码后,我想出了以下解决方案:

import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow.compat.v1 as tf1
import numpy as np

tfl = tfp.layers
tfd = tfp.distributions


class MixtureMultivariateNormalTriL(tfl.DistributionLambda):
    """ Creates a mixture of multivariate normal distributions through tfd.Mixture """

    def __init__(self, num_components, event_size, validate_args=False, scale='default', **kwargs):
        """
        Initialize the MixtureMultivariateNormalTriL layer
        :param num_components: Number of component distributions in the mixture (int)
        :param event_size: Scalar `int` representing the size of single draw from this
        distribution.
        :param validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
        Default value: False
        :param scale: type of tfp.bijectors.ScaleTriL used for the multivariate normal distribution.
        If 'default', we use tfp.bijectors.ScaleTriL(
                diag_shift=np.array(1e-5, params.dtype.as_numpy_dtype()),
                validate_args=validate_args)
            (using the same convention as in tfpl.MultivariateNormalTriL)
        If `exponential`, we use scale_tril = tfp.bijectors.ScaleTriL(
                diag_bijector=tfp.bijectors.Exp(),
                diag_shift=None,
                validate_args=validate_args
            )
        Alternatively a tfp.bijectors.ScaleTriL object can be passed.
        Default value: "default"
        """
        kwargs.pop('make_distribution_fn', None)

        super().__init__(
            lambda t: MixtureMultivariateNormalTriL.new(t, num_components, event_size, validate_args, scale),
            **kwargs
        )
        self._event_size = event_size
        self._num_components = num_components
        self._validate_args = False
        self._scale = scale

    @staticmethod
    def new(params, num_components, event_size, validate_args=False, scale='default', name=None):
        #  we expect params to be of shape (batch_size, num_components, component_params_shape)
        with tf1.name_scope(name, 'MixtureMultivariateNormalTriL',
                            [params, num_components, event_size]):
            params = tf.convert_to_tensor(value=params, name='params', dtype_hint=tf.float32)

            num_components = tf.convert_to_tensor(
                value=num_components, name='num_components', dtype_hint=tf.int32)

            mixture_dist = tfd.Categorical(logits=params[..., :num_components])

            component_params = tf.reshape(
                params[..., num_components:],
                tf.concat([tf.shape(input=params)[:-1], [num_components, -1]],
                          axis=0))  # the parameters for the various components

            params_per_component = tf.unstack(component_params, axis=1)

            if scale == "default":
                scale_tril = tfp.bijectors.ScaleTriL(
                    diag_shift=np.array(1e-5, params.dtype.as_numpy_dtype()),
                    validate_args=validate_args)  # use same conventions as MultivariateNormalTriL
            elif scale == "exponential":
                scale_tril = tfp.bijectors.ScaleTriL(
                    diag_bijector=tfp.bijectors.Exp(validate_args=validate_args),
                    diag_shift=None,
                    validate_args=validate_args
                )
            else:
                assert isinstance(scale, tfp.bijectors.ScaleTriL)
                scale_tril = scale

            # for some reason, tfp doesn't manage to infer the event_shape of out distributions
            # putting applying the following bijector helps remedy this
            reshape = tfp.bijectors.Reshape(event_shape_out=(event_size,))

            distributions = [
                reshape(
                    tfd.MultivariateNormalTriL(
                        loc=par[..., :event_size],
                        scale_tril=scale_tril(par[..., event_size:]),
                        validate_args=validate_args
                    )
                )
                for par in params_per_component
            ]

            return tfd.Mixture(
                mixture_dist,
                distributions,
                validate_args=validate_args
            )

    @staticmethod
    def params_size(num_components, event_size, name=None):
        with tf1.name_scope(name, "MixtureMultivariateNormalTriL_params_size",
                            [num_components, event_size]):
            return num_components + num_components * tfl.MultivariateNormalTriL.params_size(event_size)

    def get_config(self):
        base_config = super().get_config()
        base_config["num_components"] = self._num_components
        base_config["event_size"] = self._event_size
        base_config["scale"] = self._scale
        base_config["validate_args"] = self._validate_args
        return base_config

不过,我仍在努力对其进行全面测试。

于 2019-10-28T18:22:51.057 回答