89

如何检查有向图是否是无环的?算法是如何命名的?我会很感激参考。

4

12 回答 12

99

我会尝试对图形进行拓扑排序,如果你不能,那么它就有循环。

于 2009-02-25T02:16:44.540 回答
38

做一个简单的深度优先搜索不足以找到一个循环。在一个 DFS 中可以多次访问一个节点而不存在循环。根据您从哪里开始,您也可能不会访问整个图表。

您可以按如下方式检查图形的连通分量中的循环。找到一个只有出边的节点。如果没有这样的节点,那么就有一个循环。在该节点上启动 DFS。遍历每条边时,检查边是否指向堆栈中已经存在的节点。这表明存在一个循环。如果您没有找到这样的边,则该连接组件中没有循环。

正如 Rutger Prins 指出的那样,如果您的图表未连接,您需要在每个连接的组件上重复搜索。

作为参考,Tarjan 的强连通分量算法是密切相关的。它还将帮助您找到周期,而不仅仅是报告它们是否存在。

于 2009-02-25T02:08:37.350 回答
15

本书(第二版)上的引理 22.11Introduction to Algorithms指出:

有向图 G 是非循环的当且仅当 G 的深度优先搜索不产生后边

于 2009-05-30T10:45:21.917 回答
9

解决方案1 :卡恩算法检查循环。主要思想:维护一个队列,将零度数的节点添加到队列中。然后一个一个地剥离节点,直到队列为空。检查是否存在任何节点的入边。

解决方案2 :Tarjan 算法检查强连通分量。

解决方案3 :DFS。使用整数数组来标记节点的当前状态:即 0 -- 表示该节点之前没有被访问过。-1 - 表示该节点已被访问,并且其子节点正在被访问。1 - 表示该节点已被访问,并且已完成。所以如果一个节点在做DFS的时候状态为-1,就说明一定存在一个循环。

于 2014-09-19T19:49:45.400 回答
4

刚刚在谷歌采访中提出了这个问题。

拓扑排序

您可以尝试按拓扑排序,即 O(V + E),其中 V 是顶点数,E 是边数。当且仅当可以做到这一点时,有向图是无环的。

递归叶子去除

递归删除叶节点,直到没有剩余,如果剩下的节点不止一个,你就有了一个循环。除非我弄错了,否则这是 O(V^2 + VE)。

DFS 风格 ~ O(n + m)

然而,一个有效的 DFS 式算法,最坏情况 O(V + E),是:

function isAcyclic (root) {
    const previous = new Set();

    function DFS (node) {
        previous.add(node);

        let isAcyclic = true;
        for (let child of children) {
            if (previous.has(node) || DFS(child)) {
                isAcyclic = false;
                break;
            }
        }

        previous.delete(node);

        return isAcyclic;
    }

    return DFS(root);
}
于 2018-08-15T19:13:02.480 回答
2

ShuggyCoUk 给出的解决方案是不完整的,因为它可能不会检查所有节点。


def isDAG(nodes V):
    while there is an unvisited node v in V:
        bool cycleFound = dfs(v)
        if cyclefound:
            return false
    return true

这具有时间复杂度 O(n+m) 或 O(n^2)

于 2009-02-25T01:29:06.680 回答
1

我知道这是一个老话题,但对于未来的搜索者来说,这里是我创建的 C# 实现(没有声称它是最有效的!)。这旨在使用一个简单的整数来标识每个节点。您可以根据自己的喜好进行装饰,只要您的节点对象正确地散列和等于。

对于非常深的图,这可能会产生很高的开销,因为它会在每个深度节点处创建一个哈希集(它们在广度上被破坏)。

您输入要从中搜索的节点以及到达该节点的路径。

  • 对于具有单个根节点的图,您发送该节点和一个空哈希集
  • 对于具有多个根节点的图,您可以将其包装在这些节点上的 foreach 中,并为每次迭代传递一个新的空哈希集
  • 检查任何给定节点下方的循环时,只需将该节点与一个空哈希集一起传递

    private bool FindCycle(int node, HashSet<int> path)
    {
    
        if (path.Contains(node))
            return true;
    
        var extendedPath = new HashSet<int>(path) {node};
    
        foreach (var child in GetChildren(node))
        {
            if (FindCycle(child, extendedPath))
                return true;
        }
    
        return false;
    }
    
于 2013-10-24T17:47:26.703 回答
1

做DFS时不应该有任何后边。在做DFS时跟踪已经访问过的节点,如果在当前节点和现有节点之间遇到一条边,则图有循环。

于 2014-10-28T05:14:07.023 回答
1

这是一个快速代码,用于查找图形是否有循环:

func isCyclic(G : Dictionary<Int,Array<Int>>,root : Int , var visited : Array<Bool>,var breadCrumb : Array<Bool>)-> Bool
{

    if(breadCrumb[root] == true)
    {
        return true;
    }

    if(visited[root] == true)
    {
        return false;
    }

    visited[root] = true;

    breadCrumb[root] = true;

    if(G[root] != nil)
    {
        for child : Int in G[root]!
        {
            if(isCyclic(G,root : child,visited : visited,breadCrumb : breadCrumb))
            {
                return true;
            }
        }
    }

    breadCrumb[root] = false;
    return false;
}


let G = [0:[1,2,3],1:[4,5,6],2:[3,7,6],3:[5,7,8],5:[2]];

var visited = [false,false,false,false,false,false,false,false,false];
var breadCrumb = [false,false,false,false,false,false,false,false,false];




var isthereCycles = isCyclic(G,root : 0, visited : visited, breadCrumb : breadCrumb)

这个想法是这样的:一个普通的 dfs 算法,它有一个数组来跟踪访问的节点,还有一个额外的数组作为指向当前节点的节点的标记,这样当我们为节点执行 dfs 时我们将其在标记数组中的对应项设置为真,这样当遇到一个已经访问过的节点时,我们检查其在标记数组中的对应项是否为真,如果它为真,那么它就是让给自己的节点之一(因此cycle) ,诀窍是每当节点的 dfs 返回时,我们将其相应的标记设置回 false ,这样如果我们从另一条路线再次访问它,我们就不会被愚弄。

于 2015-01-10T14:59:15.397 回答
1

这是我在伪代码中的实现:

bool Acyclacity_Test
   InitColor() //Sets to WHITE every vertex
   while there is a node v in V:
      if (v.color == WHITE) then
         tmp = Aux_Acy(v);
         if ( not tmp ) return false
   return true
END

bool Aux_Acy(u)
   u.color = GREY
   for each node v in Adj(u)
       if(v.color == GREY) return false
       else if(v.color == WHITE) tmp = Aux_Acy(v)
       if(!tmp) return false;
   u.color = BLACK
   return true
END
于 2021-06-21T10:17:01.053 回答
0

这是我的剥离叶节点算法的 ruby​​ 实现。

def detect_cycles(initial_graph, number_of_iterations=-1)
    # If we keep peeling off leaf nodes, one of two things will happen
    # A) We will eventually peel off all nodes: The graph is acyclic.
    # B) We will get to a point where there is no leaf, yet the graph is not empty: The graph is cyclic.
    graph = initial_graph
    iteration = 0
    loop do
        iteration += 1
        if number_of_iterations > 0 && iteration > number_of_iterations
            raise "prevented infinite loop"
        end

        if graph.nodes.empty?
            #puts "the graph is without cycles"
            return false
        end

        leaf_nodes = graph.nodes.select { |node| node.leaving_edges.empty? }

        if leaf_nodes.empty?
            #puts "the graph contain cycles"
            return true
        end

        nodes2 = graph.nodes.reject { |node| leaf_nodes.member?(node) }
        edges2 = graph.edges.reject { |edge| leaf_nodes.member?(edge.destination) }
        graph = Graph.new(nodes2, edges2)
    end
    raise "should not happen"
end
于 2014-06-27T19:45:52.223 回答
0

您可以在这里使用我的答案中的查找周期反转https://stackoverflow.com/a/60196714/1763149

def is_acyclic(graph):
    return not has_cycle(graph)
于 2020-02-12T21:34:38.673 回答