这是我放在一起的一些(旧)示例代码,后面是现代化的代码:
package opennlp;
import opennlp.tools.cmdline.PerformanceMonitor;
import opennlp.tools.cmdline.postag.POSModelLoader;
import opennlp.tools.postag.POSModel;
import opennlp.tools.postag.POSSample;
import opennlp.tools.postag.POSTaggerME;
import opennlp.tools.tokenize.WhitespaceTokenizer;
import opennlp.tools.util.ObjectStream;
import opennlp.tools.util.PlainTextByLineStream;
import java.io.File;
import java.io.IOException;
import java.io.StringReader;
public class OpenNlpTest {
public static void main(String[] args) throws IOException {
POSModel model = new POSModelLoader().load(new File("en-pos-maxent.bin"));
PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent");
POSTaggerME tagger = new POSTaggerME(model);
String input = "Can anyone help me dig through OpenNLP's horrible documentation?";
ObjectStream<String> lineStream =
new PlainTextByLineStream(new StringReader(input));
perfMon.start();
String line;
while ((line = lineStream.read()) != null) {
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
String[] tags = tagger.tag(whitespaceTokenizerLine);
POSSample sample = new POSSample(whitespaceTokenizerLine, tags);
System.out.println(sample.toString());
perfMon.incrementCounter();
}
perfMon.stopAndPrintFinalResult();
}
}
输出是:
Loading POS Tagger model ... done (2.045s)
Can_MD anyone_NN help_VB me_PRP dig_VB through_IN OpenNLP's_NNP horrible_JJ documentation?_NN
Average: 76.9 sent/s
Total: 1 sent
Runtime: 0.013s
这基本上是从作为 OpenNLP 的一部分包含的 POSTaggerTool 类中工作的。sample.getTags()
是一个String
具有标签类型本身的数组。
这需要对训练数据的直接文件访问,这真的非常糟糕。
更新后的代码库有点不同(可能更有用。)
首先,一个 Maven POM:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.javachannel</groupId>
<artifactId>opennlp-example</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.opennlp</groupId>
<artifactId>opennlp-tools</artifactId>
<version>1.6.0</version>
</dependency>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>[6.8.21,)</version>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
</project>
这是作为测试编写的代码,因此位于./src/test/java/org/javachannel/opennlp/example
:
package org.javachannel.opennlp.example;
import opennlp.tools.cmdline.PerformanceMonitor;
import opennlp.tools.postag.POSModel;
import opennlp.tools.postag.POSSample;
import opennlp.tools.postag.POSTaggerME;
import opennlp.tools.tokenize.WhitespaceTokenizer;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.net.URL;
import java.nio.channels.Channels;
import java.nio.channels.ReadableByteChannel;
import java.util.stream.Stream;
public class POSTest {
private void download(String url, File destination) throws IOException {
URL website = new URL(url);
ReadableByteChannel rbc = Channels.newChannel(website.openStream());
FileOutputStream fos = new FileOutputStream(destination);
fos.getChannel().transferFrom(rbc, 0, Long.MAX_VALUE);
}
@DataProvider
Object[][] getCorpusData() {
return new Object[][][]{{{
"Can anyone help me dig through OpenNLP's horrible documentation?"
}}};
}
@Test(dataProvider = "getCorpusData")
public void showPOS(Object[] input) throws IOException {
File modelFile = new File("en-pos-maxent.bin");
if (!modelFile.exists()) {
System.out.println("Downloading model.");
download("http://opennlp.sourceforge.net/models-1.5/en-pos-maxent.bin", modelFile);
}
POSModel model = new POSModel(modelFile);
PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent");
POSTaggerME tagger = new POSTaggerME(model);
perfMon.start();
Stream.of(input).map(line -> {
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line.toString());
String[] tags = tagger.tag(whitespaceTokenizerLine);
POSSample sample = new POSSample(whitespaceTokenizerLine, tags);
perfMon.incrementCounter();
return sample.toString();
}).forEach(System.out::println);
perfMon.stopAndPrintFinalResult();
}
}
这段代码实际上并没有测试任何东西——它是一个冒烟测试,如果有的话——但它应该作为一个起点。另一个(可能)好的事情是,如果您还没有下载模型,它会为您下载模型。