0

TFP 分发应该能够开箱即用地进行批处理。但是,我面临批量混合分布的问题。这是一个玩具示例(使用急切执行):

tfd = tfp.distributions
mix = np.array([[0.6, 0.4],[0.3, 0.7]] )
bimix_gauss = tfd.Mixture(
  cat=tfd.Categorical(probs=mix),
  components=[
    tfd.Normal(loc=[-1.0, -2.0], scale=[0.1, 0.1]),
    tfd.Normal(loc=[+1.0, +2.0], scale=[0.5, 0.5]),
])

print(bimix_gauss.sample())
print(bimix_gauss.prob(0.0))

基本上,它只是对默认示例的支持:https ://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Mixture

采样工作正常,但此分布的概率返回错误: InvalidArgumentError: cannot compute Add as input #1(zero-based) was expected to be a double tensor but is a float tensor [Op:Add] name: Mixture/prob/add/

任何猜测,我做错了什么?

PS。批量高斯分布的相同示例可以正常工作。

4

1 回答 1

0

问题是 numpy 默认为 float64,但 TFP 遵循默认为 float32 的 TF 约定。因此,您的正态分布(其参数是裸 python 列表)在 Normal 的构造函数中被重铸为 tf.Tensors 作为 float32 张量,最终导致类型错误。您可以通过强制 np 数组为 float 32 来修复,或者更简单地通过将混合值作为列表而不是 ndarrays 传递。

于 2019-10-08T16:08:26.770 回答