我读到批量归一化和 dropout 是避免神经网络过度拟合的两种不同方法。在以下相同的估计器中使用两者是否相关?
```
model1 = tf.estimator.DNNClassifier(feature_columns=feature_columns_complex_standardized,
hidden_units=[512,512,512],
optimizer=tf.train.AdamOptimizer(learning_rate=0.001, beta1= 0.9,beta2=0.99, epsilon = 1e-08,use_locking=False),
weight_column=weights,
dropout=0.5,
activation_fn=tf.nn.softmax,
n_classes=10,
label_vocabulary=Action_vocab,
model_dir='./Models9/Action/',
loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE,
config=tf.estimator.RunConfig().replace(save_summary_steps=10),
batch_norm=True)