0

我有一个如下数据框:

from pyspark import SparkContext, SparkConf,SQLContext
import numpy as np
from scipy.spatial.distance import cosine
from pyspark.sql.functions import lit,countDistinct,udf,array,struct
import pyspark.sql.functions as F
config = SparkConf("local")
sc = SparkContext(conf=config)
sqlContext=SQLContext(sc)

@udf("float")
def myfunction(x):
    y=np.array([1,3,9])
    x=np.array(x)
    return cosine(x,y)


df = sqlContext.createDataFrame([("doc_3",1,3,9), ("doc_1",9,6,0), ("doc_2",9,9,3) ]).withColumnRenamed("_1","doc").withColumnRenamed("_2","word1").withColumnRenamed("_3","word2").withColumnRenamed("_4","word3")


df2=df.select("doc", array([c for c in df.columns if c not in {'doc'}]).alias("words"))

df2=df2.withColumn("cosine",myfunction("words"))

这会引发错误:

2002 年 19 月 10 日 21:24:58 错误执行程序:阶段 1.0 中的任务 0.0 异常(TID 1)

net.razorvine.pickle.PickleException:在 net.razorvine.pickle.Unpickler.load_reduce 的 net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23) 处构造 ClassDict(用于 numpy.dtype)的预期零参数(Unpickler.java:707) 在 net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:175) 在 net.razorvine.pickle.Unpickler.load(Unpickler.java:99) 在 net.razorvine.pickle.Unpickler。加载(Unpickler.java:112)

我不确定为什么不能将列表类型转换为 numpy 数组?任何帮助表示赞赏

4

1 回答 1

1

这与您之前的问题基本相同。您创建了一个 udf 并告诉 spark 该函数将返回 a float,但您返回一个类型为 的对象numpy.float64

您可以通过调用将 numpy 类型转换为 python 类型,item()如下所示:

import numpy as np
from scipy.spatial.distance import cosine
from pyspark.sql.functions import lit,countDistinct,udf,array,struct
import pyspark.sql.functions as F


@udf("float")
def myfunction(x):
    y=np.array([1,3,9])
    x=np.array(x)
    return cosine(x,y).item()


df = spark.createDataFrame([("doc_3",1,3,9), ("doc_1",9,6,0), ("doc_2",9,9,3) ]).withColumnRenamed("_1","doc").withColumnRenamed("_2","word1").withColumnRenamed("_3","word2").withColumnRenamed("_4","word3")


df2=df.select("doc", array([c for c in df.columns if c not in {'doc'}]).alias("words"))

df2=df2.withColumn("cosine",myfunction("words"))

df2.show(truncate=False)

输出:

+-----+---------+----------+ 
| doc |   words |   cosine | 
+-----+---------+----------+ 
|doc_3|[1, 3, 9]|      0.0 | 
|doc_1|[9, 6, 0]|0.7383323 | 
|doc_2|[9, 9, 3]|0.49496463| 
+-----+---------+----------+
于 2019-10-02T13:56:49.527 回答