我RFECV
在 scikit-learn 中用于特征选择。我想将简单线性模型 ( X,y
) 的结果与对数转换模型 (使用X, log(y)
)的结果进行比较
简单模型:
RFECV
并cross_val_score
提供相同的结果(我们需要将所有折叠的交叉验证的平均分数与RFECV
所有特征的分数进行比较:0.66
= 0.66
,没问题,结果是可靠的)
日志模型:问题:似乎RFECV
没有提供转换的方法y
。这种情况下的分数是0.55
vs 0.53
。不过,这是意料之中的,因为我必须手动应用np.log
以适应数据:log_seletor = log_selector.fit(X,np.log(y))
. 这个 r2 分数是用于y = log(y)
,没有inverse_func
,而我们需要的是一种方法来拟合模型log(y_train)
并使用 计算分数exp(y_test)
。或者,如果我尝试使用TransformedTargetRegressor
,我会得到代码中显示的错误:分类器不公开“coef_”或“feature_importances_”属性
如何解决问题并确保特征选择过程可靠?
from sklearn.datasets import make_friedman1
from sklearn.feature_selection import RFECV
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
from sklearn.compose import TransformedTargetRegressor
import numpy as np
X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
estimator = linear_model.LinearRegression()
log_estimator = TransformedTargetRegressor(regressor=linear_model.LinearRegression(),
func=np.log,
inverse_func=np.exp)
selector = RFECV(estimator, step=1, cv=5, scoring='r2')
selector = selector.fit(X, y)
###
# log_selector = RFECV(log_estimator, step=1, cv=5, scoring='r2')
# log_seletor = log_selector.fit(X,y)
# #RuntimeError: The classifier does not expose "coef_" or "feature_importances_" attributes
###
log_selector = RFECV(estimator, step=1, cv=5, scoring='r2')
log_seletor = log_selector.fit(X,np.log(y))
print("**Simple Model**")
print("RFECV, r2 scores: ", np.round(selector.grid_scores_,2))
scores = cross_val_score(estimator, X, y, cv=5)
print("cross_val, mean r2 score: ", round(np.mean(scores),2), ", same as RFECV score with all features")
print("no of feat: ", selector.n_features_ )
print("**Log Model**")
log_scores = cross_val_score(log_estimator, X, y, cv=5)
print("RFECV, r2 scores: ", np.round(log_selector.grid_scores_,2))
print("cross_val, mean r2 score: ", round(np.mean(log_scores),2))
print("no of feat: ", log_selector.n_features_ )
输出:
**Simple Model**
RFECV, r2 scores: [0.45 0.6 0.63 0.68 0.68 0.69 0.68 0.67 0.66 0.66]
cross_val, mean r2 score: 0.66 , same as RFECV score with all features
no of feat: 6
**Log Model**
RFECV, r2 scores: [0.39 0.5 0.59 0.56 0.55 0.54 0.53 0.53 0.53 0.53]
cross_val, mean r2 score: 0.55
no of feat: 3