5

在 Cubical Agda 的标准库中,有一些有限的多重集,我在下面重现了它们的优雅定义:

{-# OPTIONS --cubical --safe #-}

open import Cubical.Foundations.Prelude

infixr 20 _∷_

data FMSet (A : Set) : Set where
  []    : FMSet A
  _∷_   : (x : A) → (xs : FMSet A) → FMSet A
  comm  : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
  trunc : isSet (FMSet A)

_++_ : ∀ {A : Set} -> FMSet A → FMSet A → FMSet A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
comm x y xs i ++ ys = comm x y (xs ++ ys) i
trunc xs1 xs2 p q i j ++ ys =
  trunc (xs1 ++ ys) (xs2 ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j

[]作为右中性元素的证明使用了FMSetElimProp.f我不理解的抽象引理。因此,我试图直接证明,但我被卡住了。这是我的尝试:

unitr-++ : ∀ {A : Set} (ys : FMSet A) → ys ++ [] ≡ ys
unitr-++ [] = refl
unitr-++ (y ∷ ys) = cong ((y ∷_)) (unitr-++ ys)
unitr-++ (comm x y xs i) = cong₂ {!comm x y!} (unitr-++ xs) refl
unitr-++ (trunc xs1 xs2 p q i j) = {!!}

我在正确的轨道上吗?我怎样才能完成这个证明?

4

1 回答 1

4

回答这个问题的两个 SO 问题是this 一个 forcommthis 一个 fortrunc。和你一样,我也遇到了同样的挫折:如果所有这些类型都是Sets,为什么我需要写任何东西,更不用说复杂的东西来证明一些 2 路径?!?!

所以,首先,从第一个链接的答案开始,让我们从

comm x y xs i ++ ys = ?

并问阿格达什么是洞的类型。

目标:comm x y (xs ++ []) i ≡ comm x y xs i

comm x y (xs ++ []) ≡ comm x y xs好吧,这听起来很有希望,因为我们只是通过xs + [] ≡ xs归纳知道这一点。所以,让我们问一下这到底会给我们带来什么。放入cong (comm x y) (unitr-++ xs)孔中并询问其类型:

有:

PathP
     (λ i → x ∷ y ∷ unitr-++ xs i ≡ y ∷ x ∷ unitr-++ xs i)
     (comm x y (xs ++ [])) (comm x y xs)

然后@Saizan 的回答指示我们Square用这些面孔制作:

isSet→isSet' trunc
  (comm x y (xs ++ []))
  (comm x y xs)
  (λ j → x ∷ y ∷ unitr-++ xs i)
  (λ j → y ∷ x ∷ unitr-++ xs i)

并在其上选择正确的内部点,填充我们的洞:

unitr-++ (comm x y xs i) j = isSet→isSet' trunc
  (comm x y (xs ++ []))
  (comm x y xs)
  (λ j → x ∷ y ∷ unitr-++ xs j)
  (λ j → y ∷ x ∷ unitr-++ xs j)
  j i

对于第二个缺失的子句,即在

unitr-++ (trunc xs1 xs2 p q i j) 

按照链接答案的建议,我们可以向 Agda 询问我们要构建的立方体的面:

r : Cube ? ? ? ? ? ?
r = cong (cong unitr-++) (trunc xs1 xs2 p q)

通过C-c C-s在所有六个面孔中使用,Agda 告诉我们:

r : Cube (λ i j → trunc xs1 xs2 p q i j ++ [])
         (λ i j → unitr-++ xs1 j)
         (λ i j → unitr-++ xs2 j)
         (λ i j → trunc xs1 xs2 p q i j)
         (λ i j → unitr-++ (p i) j)
         (λ i j → unitr-++ (q i) j)

所以现在我们确切地知道要构造哪个立方体(使用Sets 也是Groupoids 的事实,由 见证hLevelSuc 2 _):

unitr-++ (trunc xs1 xs2 p q i j) = isGroupoid→isGroupoid' (hLevelSuc 2 _ trunc)
  (λ i j → trunc xs1 xs2 p q i j ++ [])
  (λ i j → unitr-++ xs1 j)
  (λ i j → unitr-++ xs2 j)
  (λ i j → trunc xs1 xs2 p q i j)
  (λ i j → unitr-++ (p i) j)
  (λ i j → unitr-++ (q i) j)
  i
  j

到现在为止,一方面,我们可以很高兴我们已经完成了,但另一方面,我们很生气,因为这个答案都是“看看这个另一个答案并做到这一点”,“看看这个另一个答案并做到这一点”,但如果你能做到这一点,即使你的类型、你的函数和你的函数属性与我问我最初的问题时的不同,那么肯定有一些事情应该是在这里抽象出来,对吧?

就是它的FMSetElimProp作用。它FMSet一举实现了上述所有这些机制,特别是针对所有功能和这些功能的所有属性。因此,您不必查看这个答案和两个链接的答案,然后一遍又一遍地做所有这些,而实际上,由于所有构造的路径都是路径等效的,因此最终它不应该有所作为反正。

于 2019-10-04T20:27:44.490 回答