我正在尝试构建一个辅助函数来提取参数中给出的列中的数字。我可以在里面使用我的函数mutate
(并对所有感兴趣的列重复它),但它似乎在里面不起作用mutate_at
。
这是我的数据的示例:
> set.seed(20190928)
> evalYr <- 2018
> n <- 5
> (df <- data.frame(
+ AY = sample(2016:2019, n, replace = T),
+ Pay00 = rgamma(n, 2, 1/1000),
+ Pay01 = rgamma(n, 2, 1/1000),
+ Pay02 = rgamma(n, 2, 1/1000),
+ Pay03 = rgamma(n, 2, 1/1000)
+ ))
AY Pay00 Pay01 Pay02 Pay03
1 2018 2520.3772 2338.9490 919.8245 629.1657
2 2016 259.7804 1543.4450 661.6488 2382.7916
3 2018 2446.3075 312.5143 2297.9717 942.5627
4 2017 1386.6288 4179.0352 2370.2669 1846.5838
5 2018 541.8261 2104.4589 2622.1758 2606.0694
所以我已经构建(使用dplyr
语法)这个助手来改变PayXX
我拥有的每一列:
# Helper function to get the number inside column `PayXX` name
f1 <- function(pmt) enquo(pmt) %>% quo_name() %>% str_extract('(\\d)+') %>% as.numeric()
此功能适用于dplyr::mutate
:
> df %>% mutate(Pay00_numcol = f1(Pay00),
+ Pay01_numcol = f1(Pay01),
+ Pay02_numcol = f1(Pay02),
+ Pay03_numcol = f1(Pay03))
AY Pay00 Pay01 Pay02 Pay03 Pay00_numcol Pay01_numcol Pay02_numcol Pay03_numcol
1 2018 2520.3772 2338.9490 919.8245 629.1657 0 1 2 3
2 2016 259.7804 1543.4450 661.6488 2382.7916 0 1 2 3
3 2018 2446.3075 312.5143 2297.9717 942.5627 0 1 2 3
4 2017 1386.6288 4179.0352 2370.2669 1846.5838 0 1 2 3
5 2018 541.8261 2104.4589 2622.1758 2606.0694 0 1 2 3
但是当我尝试在内部使用相同的函数时mutate_at
,它会返回 NA:
> df %>% mutate_at(vars(starts_with('Pay')), list(numcol = ~f1(.)))
AY Pay00 Pay01 Pay02 Pay03 Pay00_numcol Pay01_numcol Pay02_numcol Pay03_numcol
1 2018 2520.3772 2338.9490 919.8245 629.1657 NA NA NA NA
2 2016 259.7804 1543.4450 661.6488 2382.7916 NA NA NA NA
3 2018 2446.3075 312.5143 2297.9717 942.5627 NA NA NA NA
4 2017 1386.6288 4179.0352 2370.2669 1846.5838 NA NA NA NA
5 2018 541.8261 2104.4589 2622.1758 2606.0694 NA NA NA NA
有人遇到过类似的问题吗?在这种情况下,我该如何处理该mutate_at
功能?
谢谢,
可复制的例子
library(tidyverse)
library(stringr)
set.seed(20190928)
evalYr <- 2018
n <- 5
(df <- data.frame(
AY = sample(2016:2019, n, replace = T),
Pay00 = rgamma(n, 2, 1/1000),
Pay01 = rgamma(n, 2, 1/1000),
Pay02 = rgamma(n, 2, 1/1000),
Pay03 = rgamma(n, 2, 1/1000)
))
# Helper function to get the number inside column `PayXX` name
f1 <- function(pmt) enquo(pmt) %>% quo_name() %>% str_extract('(\\d)+') %>% as.numeric()
# Working
df %>% mutate(Pay00_numcol = f1(Pay00),
Pay01_numcol = f1(Pay01),
Pay02_numcol = f1(Pay02),
Pay03_numcol = f1(Pay03))
# Not working
df %>% mutate_at(vars(starts_with('Pay')), list(numcol = ~f1(.)))