我无法理解的输出
kfold_results = cross_val_score(xg_cl, X_train, y_train, cv=kfold, scoring='roc_auc')
xgb.cv 的输出很清楚 - 有训练和测试分数:
[0] train-auc:0.927637+0.00405497 test-auc:0.788526+0.0152854
[1] train-auc:0.978419+0.0018253 test-auc:0.851634+0.0201297
[2] train-auc:0.985103+0.00191355 test-auc:0.86195+0.0164157
[3] train-auc:0.988391+0.000999448 test-auc:0.870363+0.0161025
[4] train-auc:0.991542+0.000756701 test-auc:0.881663+0.013579
但是 Sk-learn 包装器中的 cross_val_score 的结果是不明确的:它是每次折叠后的分数列表,但是: - test_data 还是 train_data 的结果?