我使用 tensorflow-federated learning api。最近,我将 tensorflow-federated 更新为 0.8.0 版本。然后我运行 federated_learning_for_image_classification.ipynb 文件。state = iterative_process.initialize()
但它在“ ”代码行上不起作用。
发生了一些错误,我下一步不能做。
为什么会这样?以前版本的联合 api 0.6.0 运行良好。
您可以参考下面的代码和错误图片。
import nest_asyncio
nest_asyncio.apply()
from __future__ import absolute_import, division, print_function
import collections
import warnings
from six.moves import range
import numpy as np
import six
import tensorflow as tf
import tensorflow_federated as tff
warnings.simplefilter('ignore');
tf.compat.v1.enable_v2_behavior();
np.random.seed(0);
if six.PY3:
tff.framework.set_default_executor(tff.framework.create_local_executor());
tff.federated_computation(lambda: 'Hello, World!')();
emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data();
len(emnist_train.client_ids);
print(emnist_train.client_ids, emnist_test.client_ids);
emnist_train.output_types, emnist_train.output_shapes;
example_dataset = emnist_train.create_tf_dataset_for_client(
emnist_train.client_ids[0]);
example_element = iter(example_dataset).next();
example_element['label'].numpy();
from matplotlib import pyplot as plt;
plt.imshow(example_element['pixels'].numpy(), cmap='gray', aspect='equal');
plt.grid('off')
_ = plt.show()
NUM_CLIENTS = 5
NUM_EPOCHS = 10
BATCH_SIZE = 20
SHUFFLE_BUFFER = 500
def preprocess(dataset):
def element_fn(element):
return collections.OrderedDict([
('x', tf.reshape(element['pixels'], [-1])),
('y', tf.reshape(element['label'], [1])),
])
return dataset.repeat(NUM_EPOCHS).map(element_fn).shuffle(
SHUFFLE_BUFFER).batch(BATCH_SIZE)
preprocessed_example_dataset = preprocess(example_dataset)
sample_batch = tf.nest.map_structure(
lambda x: x.numpy(), iter(preprocessed_example_dataset).next())
sample_batch
def make_federated_data(client_data, client_ids):
return [preprocess(client_data.create_tf_dataset_for_client(x))
for x in client_ids]
sample_clients = emnist_train.client_ids[0:NUM_CLIENTS]
print(sample_clients)
federated_train_data = make_federated_data(emnist_train, sample_clients)
len(federated_train_data), federated_train_data[0]
def create_compiled_keras_model():
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(
10, activation=tf.nn.softmax, kernel_initializer='zeros',
input_shape=(784,))])
model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
optimizer=tf.keras.optimizers.SGD(learning_rate=0.02),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
return model
def model_fn():
keras_model = create_compiled_keras_model()
return tff.learning.from_compiled_keras_model(keras_model, sample_batch)
iterative_process = tff.learning.build_federated_averaging_process(model_fn)
str(iterative_process.initialize.type_signature)
state = iterative_process.initialize()