我想确定一些地址的地理距离,并确定这些地址的平均值(平均距离)。
如果数据框只有一行,我找到了一个解决方案:
# Pakete laden
library(readxl)
library(openxlsx)
library(googleway)
#library(sf)
library(tidyverse)
library(geosphere)
library("ggmap")
#API Key bestimmen
set_key("")
api_key <- ""
register_google(key=api_key)
# Data
df <- data.frame(
V1 = c("80538 München, Germany", "01328 Dresden, Germany", "80538 München, Germany",
"07745 Jena, Germany", "10117 Berlin, Germany"),
V2 = c("82152 Planegg, Germany", "01069 Dresden, Germany", "82152 Planegg, Germany",
"07743 Jena, Germany", "14195 Berlin, Germany"),
V3 = c("85748 Garching, Germany", "01069 Dresden, Germany", "85748 Garching, Germany",
NA, "10318 Berlin, Germany"),
V4 = c("80805 München, Germany", "01187 Dresden, Germany", "80805 München, Germany",
"07745 Jena, Germany", NA), stringsAsFactors=FALSE
)
#replace NA for geocode-funktion
df[is.na(df)] <- ""
#slice it
df1 <- slice(df, 5:5)
# lon lat Informations
df_2 <- geocode(c(df1$V1, df1$V2,df1$V3, df1$V4)) %>% na.omit()
# to Matrix
mat_df <- as.matrix(df_2)
#dist-mat
dist_mat <- distm(mat_df)
#mean-dist of row 5
mean(dist_mat[lower.tri(dist_mat)])/1000
不幸的是,我没有实现一个为整个数据集执行代码的函数。我目前的问题是,该函数不会按行计算距离平均值,而是计算数据集所有行的平均值。
#Funktion
Mean_Dist <- function(df,w,x,y,z) {
# for (row in 1:nrow(df)) {
# dist_mat <- geocode(c(w, x, y, z))
#
# }
df <- geocode(c(w, x, y, z)) %>% na.omit() # ziehe lon lat Informationen aus Adressen
mat_df <- as.matrix(df) # schreibe diese in eine Matrix
dist_mat <- distm(mat_df)
dist_mean <- mean(dist_mat[lower.tri(dist_mat)])
return(dist_mean)
}
df %>% mutate(lon = Mean_Dist(df,df$V1, df$V2,df$V3, df$V4)/1000)
你知道我犯了什么错误吗?
澄清我的问题:我正在尝试创建一个像这样的数据框(V5):
V1 V2 V3 V4 V5
<chr> <chr> <chr> <chr> <numeric>
1 80538 München, Germany 82152 Planegg, Germany 85748 Garching, Germany 80805 München, Germany Mean_Dist_row1
2 01328 Dresden, Germany 01069 Dresden, Germany 01069 Dresden, Germany 01187 Dresden, Germany Mean_Dist_row2
3 80538 München, Germany 82152 Planegg, Germany 85748 Garching, Germany 80805 München, Germany Mean_Dist_row3
4 07745 Jena, Germany 07743 Jena, Germany 07745 Jena, Germany 07745 Jena, Germany Mean_Dist_row4
5 10117 Berlin, Germany 14195 Berlin, Germany 10318 Berlin, Germany 14476 Potsdam, Germany Mean_Dist_row5
例如,每行距离的平均值。