3

我正在构建一个多标签分类器来预测基于文本字段的标签。例如,根据电影标题预测类型。我想用来MultiLabelBinarizer()对包含所有适用流派标签的列进行二值化。例如,['action','comedy','drama']被分成三列,值为 0/1。

我使用的原因MultiLabelBinarizer()是我可以使用内置inverse_transform()函数来转换输出数组(例如array([0, 0, 1, 0, 1])直接转换为用户友好的文本输出(['action','drama'])。

分类器有效,但我在预测新数据时遇到问题。我找不到将它集成MultiLabelBinarizer()到我的管道中的方法,以便可以保存和重新加载它以推断新数据。一种解决方案是将其单独保存为泡菜对象并每次将其加载回来,但我想避免在生产中产生这种依赖性。

我知道这类似于我在管道中构建的 tf-idf 向量,但不同之处在于它应用于目标列(流派标签)而不是我的自变量(文本注释)。这是我训练多标签 SVM 的代码:

def svm_train(df):  
  mlb = MultiLabelBinarizer()
  y = mlb.fit_transform(df['Genres'])

  with mlflow.start_run():
    x_train, x_test, y_train, y_test = train_test_split(df['Movie Title'], y, test_size=0.3)

    # Instantiate TF-IDF Vectorizer and SVM Model
    tfidf_vect = TfidfVectorizer()
    mdl = OneVsRestClassifier(LinearSVC(loss='hinge'))
    svm_pipeline = Pipeline([('tfidf', tfidf_vect), ('clf', mdl)])

    svm_pipeline.fit(x_train, y_train)
    prediction = svm_pipeline.predict(x_test)

    report = classification_report(y_test, prediction, target_names=mlb.classes_)

    mlflow.sklearn.log_model(svm_pipeline, "Multilabel Classifier")
    mlflow.log_artifact(mlb, "MLB")

  return(report)

svm_train(df)

推理包括在单独的 Databricks 笔记本中从 MLflow 重新加载保存的模型(与在 pickle 文件中加载相同)并使用管道进行预测:

def predict_labels(new_data):
  model_uri = '...MLflow path...'
  model = mlflow.sklearn.load_model(model_uri)
  predictions = model.predict(new_data)
  # If I can't package the MultiLabelBinarizer() into the Pipeline, this 
  # is where I'd have to load the pickle object mlb
  # so that I can inverse_transform()
  return mlb.inverse_transform(predictions)

new_data = ['Some movie title']
predict_labels(new_data)

['action','comedy']

这是我正在使用的所有库:

import pandas as pd
import numpy as np
import mlflow
import mlflow.sklearn
import glob, os
from pyspark.sql import DataFrame
from sklearn.pipeline import Pipeline
from sklearn import preprocessing
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn import svm
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, precision_score, recall_score
4

1 回答 1

2

对于您的用例,您可能需要考虑使用MLflow 的功能来持久化自定义模型。根据文档

虽然 MLflow 的内置模型持久性实用程序可以方便地将各种流行的 ML 库中的模型打包为 MLflow 模型格式,但它们并不涵盖所有用例。例如,您可能希望使用 MLflow 的内置风格未明确支持的 ML 库中的模型。或者,您可能希望打包自定义推理代码和数据以创建 MLflow 模型。幸运的是,MLflow 提供了两种可用于完成这些任务的解决方案:自定义 Python 模型和自定义风格。

特别是,您应该能够以类似于链接示例中的 XGBoost 模型的方式将 MultiLabelIndexer 与 Sklearn 模型一起记录为工件,然后在预测时将其加载回来,例如:

# Save sklearn model & multilabel indexer to paths on the local filesystem
sklearn_model_path = "some/local/path"
labelindexer_path = "another/local/path"
# ... save your models objects here to sklearn_model_path and labelindexer_path

# Define the custom model class
import mlflow.pyfunc
class SklearnWrapper(mlflow.pyfunc.PythonModel):
    def load_context(self, context):
        import pickle, mlflow
        with open(context["indexer_path"], 'rb') as handle:
            self.indexer = pickle.load(handle)
        self.pipeline = mlflow.sklearn.load_model("pipeline_path")

    def predict(self, context, model_input):
        pipeline_preds = self.pipeline.predict(model_input)
        return self.indexer.inverse_transform(pipeline_preds)

# Create a Conda environment for the new MLflow Model that contains the XGBoost library
# as a dependency, as well as the required CloudPickle library
import cloudpickle
import sklearn
conda_env = {
    'channels': ['defaults'],
    'dependencies': [
      'sklearn={}'.format(sklearn.__version__),
      'cloudpickle={}'.format(cloudpickle.__version__),
    ],
    'name': 'sklearn_env'
}

# Save the MLflow Model
artifacts = {
    "pipeline_path": sklearn_model_path,
    "indexer_path": labelindexer_path,
}
mlflow_pyfunc_model_path = "sklearn_mlflow_pyfunc"
mlflow.pyfunc.save_model(
        path=mlflow_pyfunc_model_path, python_model=XGBWrapper(), artifacts=artifacts,
        conda_env=conda_env)

# Load the model in `python_function` format
loaded_model = mlflow.pyfunc.load_model(mlflow_pyfunc_model_path)
# Predict on a pandas DataFrame
import pandas as pd
loaded_model.predict(pd.DataFrame(...))

请注意,我们的自定义模型仍会加载回 MultiLabelIndexer,但 MLflow 会将索引器与您的管道和自定义模型逻辑一起保存,以便您可以将模型视为生产部署的单个连贯单元。

于 2019-09-13T23:32:28.877 回答