开发工具包版本:1.0.43
为了最大限度地减少点击和比较PipelineRun
s 之间的准确性,我想将一个指标从 a 内部记录PythonScriptStep
到 parent PipelineRun
。我以为我可以这样做:
from azureml.core import Run
run = Run.get_context()
foo = 0.80
run.parent.log("accuracy",foo)
但是我收到此错误。
Traceback (most recent call last):
File "get_metrics.py", line 62, in <module>
run.parent.log("geo_mean", top3_runs)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/core/run.py", line 459, in parent
return None if parent_run_id is None else get_run(self.experiment, parent_run_id)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/core/run.py", line 1713, in get_run
return next(runs)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/core/run.py", line 297, in _rehydrate_runs
yield factory(experiment, run_dto)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/pipeline/core/run.py", line 325, in _from_dto
return PipelineRun(experiment=experiment, run_id=run_dto.run_id)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/pipeline/core/run.py", line 74, in __init__
service_endpoint=_service_endpoint)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/pipeline/core/_graph_context.py", line 46, in __init__
service_endpoint=service_endpoint)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/pipeline/core/_aeva_provider.py", line 118, in create_provider
service_endpoint=service_endpoint)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/pipeline/core/_aeva_provider.py", line 133, in create_service_caller
service_endpoint = _AevaWorkflowProvider.get_endpoint_url(workspace, experiment_name)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/pipeline/core/_aeva_provider.py", line 153, in get_endpoint_url
workspace_name=workspace.name, workspace_id=workspace._workspace_id)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/core/workspace.py", line 749, in _workspace_id
self.get_details()
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/core/workspace.py", line 594, in get_details
self._subscription_id)
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/_project/_commands.py", line 507, in show_workspace
AzureMachineLearningWorkspaces, subscription_id).workspaces,
File "/azureml-envs/azureml_ffecfef6fbfa1d89f72d5af22e52c081/lib/python3.6/site-packages/azureml/core/authentication.py", line 112, in _get_service_client
all_subscription_list, tenant_id = self._get_all_subscription_ids()
TypeError: 'NoneType' object is not iterable
更新
在进一步调查中,我尝试parent
使用下面的行打印运行的属性并得到相同的Traceback
print("print run parent attribute", run.parent)
get_properties()
方法如下。我猜想 azureml 只是将azureml.pipelinerunid
属性用于管道树层次结构,并且该parent
属性已留给任何用户定义的层次结构。
{
"azureml.runsource": "azureml.StepRun",
"ContentSnapshotId": "45bdecd3-1c43-48da-af5c-c95823c407e0",
"StepType": "PythonScriptStep",
"ComputeTargetType": "AmlCompute",
"azureml.pipelinerunid": "e523d575-c373-46d2-a4bc-1717f5e34ec2",
"_azureml.ComputeTargetType": "batchai",
"AzureML.DerivedImageName": "azureml/azureml_dfd7f4f952ace529f986fe919909c3ec"
}