我正在使用 Scipy 工具中的方法dogleg
来optimize.minimize
求解我的非线性 2 方程系统。
sol = optimize.minimize(self.myF, self.initialWCEC,rZ,jac=self.myJacobian,hess=self.myJHessian,tol=6e-11, method='dogleg',options={'gtol':1e-12})
为了使用这种方法,我定义了自己的粗麻布和雅可比函数。他们看起来像
def myJacobian(self,WCEC):
jacF = numpy.array([[- k - (k**2*EC*WC*(Rs - rZ))/50,- (k**2*EC**2*(Rs - rZ))/100 - (Cmax**2*w**2*(Rs - rZ))/100],
[2*k**2*EC*(iZ - Ls*w) + (k**2*Ls*EC*w*WC)/100,(Ls*Cmax**2*w**3)/200 + (Ls*k**2*EC**2*w)/200]]);
return jacF
def myJHessian(self,WCEC):
hessF = numpy.array([[ -(k**2*WC*(Rs - rZ))/50 , 0.0],
[ 2*k**2*(iZ - Ls*w) + (k**2*Ls*w*WC)/100 ,(k**2*Ls*EC*w)/100]])
return hessF
运行代码表明
hessF = [[0.20261201 0. ]
[0.06653955 0.00095037]]
jacF = [[0.00060601 0.00033435]
[0.03326977 0.00025093]]
但是,我收到以下错误
sqrt_discriminant = math.sqrt(b*b - 4*a*c)
TypeError: only size-1 arrays can be converted to Python scalars
存在
a
[[-6.61346725e-03 -6.28263166e-05]
[ 6.78327072e+00 5.78564519e-02]]
b
[[0.12759629 0.00099103]
[0.05509243 0.00050403]]
c
[[-0.9945422 -0.99985806]
[-0.98336328 -0.99954252]]
d
[[ 6.77328767e-02 3.22094783e-04]
[-3.47761293e+01 -2.62788245e-01]]
我在方法中找到的get_boundaries_intersections(self, z, d, trust_radius)
为什么我会收到此错误?我没有为 Jacobian 和 Hessian 函数设置正确的类型吗?根据文档,它们都应该是一个数组。
编辑:添加 myF
def myF(self,WCEC,Zin):
F1 = ((((EC/10)*k)*(WC/100))**2)*(rZ - Rs) +(( Cmax * ( WC/100 ) )**2)*( w**2*(rZ - Rs) ) - (((EC/10)*k)*(WC/100));
F2 = (EC*k)**2*(iZ - w*Ls) + (EC*k)**2*WC*((w*Ls)/200) + WC*((w*Ls)/200)*(w*Cmax)**2 + (w*Cmax)**2 *(iZ -(w*Ls));
return F1,F2
EDIT2:添加我的回溯
Traceback (most recent call last):
File "C:\myself\eclipse\plugins\org.python.pydev.core_7.2.1.201904261721\pysrc\pydevd.py", line 2316, in <module>
main()
File "C:\myself\eclipse\plugins\org.python.pydev.core_7.2.1.201904261721\pysrc\pydevd.py", line 2309, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "C:\myself\eclipse\plugins\org.python.pydev.core_7.2.1.201904261721\pysrc\pydevd.py", line 1642, in run
return self._exec(is_module, entry_point_fn, module_name, file, globals, locals)
File "C:\myself\eclipse\plugins\org.python.pydev.core_7.2.1.201904261721\pysrc\pydevd.py", line 1649, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "C:\myself\eclipse\plugins\org.python.pydev.core_7.2.1.201904261721\pysrc\_pydev_imps\_pydev_execfile.py", line 25, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "C:\myProjectDir\myProjectFile.py", line 497, in <module>
getGC(sensor,untilSample=numbSamples)
File "C:\myProjectDir\myProjectFile.py", line 478, in getGC
GLump,CLump,WCLump= pinsAsLine.mysolverFunction(v_mag, v_phs)
File "C:\myProjectDir\myProjectFile.py", line 267, in mysolverFunction
sol = optimize.minimize(self.myF, self.initialWCEC,Zin,jac=self.myJacobian,hess=self.myJHessian,tol=6e-11, method='dogleg',options={'gtol':1e-12})#,'initial_trust_radius':,'max_trust_radius':,'eta':,'})
File "C:\myself\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\optimize\_minimize.py", line 616, in minimize
callback=callback, **options)
File "C:\myself\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\optimize\_trustregion_dogleg.py", line 37, in _minimize_dogleg
**trust_region_options)
File "C:\myself\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\optimize\_trustregion.py", line 189, in _minimize_trust_region
p, hits_boundary = m.solve(trust_radius)
File "C:\myself\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\optimize\_trustregion_dogleg.py", line 121, in solve
trust_radius)
File "C:\myself\AppData\Local\Programs\Python\Python37\lib\site-packages\scipy\optimize\_trustregion.py", line 83, in get_boundaries_intersections
sqrt_discriminant = math.sqrt(b*b - 4*a*c)
TypeError: only size-1 arrays can be converted to Python scalars
添加_trustregion
片段以显示与内import math
一起使用math.sqrt
get_boundaries_intersections()
"""Trust-region optimization."""
from __future__ import division, print_function, absolute_import
import math
import numpy as np
import scipy.linalg
.
.
.
def get_boundaries_intersections(self, z, d, trust_radius):
"""
Solve the scalar quadratic equation ||z + t d|| == trust_radius.
This is like a line-sphere intersection.
Return the two values of t, sorted from low to high.
"""
a = np.dot(d, d)
b = 2 * np.dot(z, d)
c = np.dot(z, z) - trust_radius**2
sqrt_discriminant = math.sqrt(b*b - 4*a*c)
# The following calculation is mathematically
# equivalent to:
# ta = (-b - sqrt_discriminant) / (2*a)
# tb = (-b + sqrt_discriminant) / (2*a)
# but produce smaller round off errors.
# Look at Matrix Computation p.97
# for a better justification.
aux = b + math.copysign(sqrt_discriminant, b)
ta = -aux / (2*a)
tb = -2*c / aux
return sorted([ta, tb])