1

我目前正在研究强化学习中的动态规划,其中我遇到了两个概念Value-IterationPolicy-Iteration。为了理解这一点,我正在实施来自 Sutton 的 gridworld 示例,它说:

非终结状态是 S = {1, 2, . . . , 14}。每个状态有四个可能的动作,A = {上、下、右、左},它们确定性地导致相应的状态转换,除了使代理离开网格的动作实际上保持状态不变。因此,例如,对于所有属于 R . 这是一个不折不扣的、偶发的任务。在达到最终状态之前,所有转换的奖励都是 -1。终端状态在图中用阴影表示(虽然在两处表示,但形式上是一种状态)。因此,对于所有状态 s、s' 和动作 a,预期奖励函数为 r(s, a, s') = 1。假设代理遵循等概率随机策略(所有动作均等)。

下面是这两种方法的实现

class GridWorld:
    def __init__(self,grid_size = 5, gamma = 0.9, penalty = -1.0, theta = 1e-2):
        self.grid_size = grid_size
        self.discount = gamma
        self.actions = [np.array([0, -1]),
                   np.array([-1, 0]),
                   np.array([0, 1]),
                   np.array([1, 0])]
        self.action_prob = 1/len(self.actions)
        self.theta = theta
        print('action prob : ',self.action_prob)
        self.penalty_reward = penalty
        self.re_init()

    def re_init(self):
        self.values = np.zeros((self.grid_size, self.grid_size))
        self.policy = np.zeros(self.values.shape, dtype=np.int)

    def checkTerminal(self,state):
        x, y = state
        if x == 0 and y == 0:
            return 1
        elif (x == self.grid_size - 1 and y == self.grid_size - 1):
            return 1
        else : 
            return 0


    def step(self, state, action):
        #print(state)
        if self.checkTerminal(state):
            next_state = state
            reward = 0
        else:
            next_state = (np.array(state) + action).tolist()
            x, y = next_state
            if x < 0 or x >= self.grid_size or y < 0 or y >= self.grid_size:
                next_state = state
            reward = self.penalty_reward     

        return next_state, reward


    def compValueIteration(self):
        new_state_values = np.zeros((self.grid_size, self.grid_size))
        policy = np.zeros((self.grid_size, self.grid_size))
        iter_cnt = 0
        while True:
            #delta = 0
            state_values = new_state_values.copy()
            old_state_values = state_values.copy()

            for i in range(self.grid_size):
                for j in range(self.grid_size):
                    values = []
                    for action in self.actions:
                        (next_i, next_j), reward = self.step([i, j], action)
                        values.append(reward + self.discount*state_values[next_i, next_j])
                    new_state_values[i, j] = np.max(values)
                    policy[i, j] = np.argmax(values)
                    #delta = max(delta, np.abs(old_state_values[i, j] - new_state_values[i, j]))
            delta = np.abs(old_state_values - new_state_values).max()        
            print(f'Difference: {delta}')
            if delta < self.theta:
                break
            iter_cnt += 1

        return new_state_values, policy, iter_cnt



    def policyEvaluation(self,policy,new_state_values):
        #new_state_values = np.zeros((self.grid_size, self.grid_size))
        iter_cnt = 0
        while True:
            delta = 0 
            state_values = new_state_values.copy()
            old_state_values = state_values.copy()
            for i in range(self.grid_size):
                for j in range(self.grid_size):
                    action = policy[i, j]
                    (next_i, next_j), reward = self.step([i, j], action)
                    value = self.action_prob * (reward + self.discount * state_values[next_i, next_j])
                    new_state_values[i, j] = value
                    delta = max(delta, np.abs(old_state_values[i, j] - new_state_values[i, j]))

            print(f'Difference: {delta}')
            if delta < self.theta:
                break
            iter_cnt += 1

        return new_state_values


    def policyImprovement(self, policy, values, actions):

        #expected_action_returns = np.zeros((self.grid_size, self.grid_size, np.size(actions)))
        policy_stable = True

        for i in range(self.grid_size):
            for j in range(self.grid_size):
                old_action = policy[i, j]
                act_cnt = 0
                expected_rewards = []
                for action in self.actions:
                    (next_i, next_j), reward = self.step([i, j], action)
                    expected_rewards.append(self.action_prob * (reward + self.discount * values[next_i, next_j]))
                #max_reward = np.max(expected_rewards)
                #new_action = np.random.choice(np.where(expected_rewards == max_reward)[0])
                new_action = np.argmax(expected_rewards)
                #print('new_action : ',new_action)
                #print('old_action : ',old_action)
                if old_action != new_action:
                    policy_stable = False
                policy[i, j] = new_action

        return policy, policy_stable



    def compPolicyIteration(self):
        iterations = 0
        total_start_time = time.time()

        while True:
            start_time = time.time()
            self.values = self.policyEvaluation(self.policy, self.values)
            elapsed_time = time.time() - start_time
            print(f'PE => Elapsed time {elapsed_time} seconds')
            start_time = time.time()

            self.policy, policy_stable = self.policyImprovement(self.policy,self.values, self.actions)
            elapsed_time = time.time() - start_time
            print(f'PI => Elapsed time {elapsed_time} seconds')

            if policy_stable:
                break

            iterations += 1

        total_elapsed_time = time.time() - total_start_time
        print(f'Optimal policy is reached after {iterations} iterations in {total_elapsed_time} seconds')
        return self.values, self.policy

但是我的两个实现都给出了不同的最优策略和最优值。我完全遵循了书中给出的算法。

策略迭代的结果:

values :
[[ 0.         -0.33300781 -0.33300781 -0.33300781]
 [-0.33300781 -0.33300781 -0.33300781 -0.33300781]
 [-0.33300781 -0.33300781 -0.33300781 -0.33300781]
 [-0.33300781 -0.33300781 -0.33300781  0.        ]]
****************************************************************************************************
****************************************************************************************************
policy :
[[0 0 0 0]
 [1 0 0 0]
 [0 0 0 3]
 [0 0 2 0]]

值迭代的结果:

values :
[[ 0.0 -1.0 -2.0 -3.0]
 [-1.0 -2.0 -3.0 -2.0]
 [-2.0 -3.0 -2.0 -1.0]
 [-3.0 -2.0 -1.0  0.0]]
****************************************************************************************************
****************************************************************************************************
[[0. 0. 0. 0.]
 [1. 0. 0. 3.]
 [1. 0. 2. 3.]
 [1. 2. 2. 0.]]

此外,价值迭代在 4 次迭代后收敛,而策略迭代在 2 次迭代后收敛。

我哪里做错了?他们能给出不同的最优策略吗?但是我认为在我们获得的第 3 次迭代值之后的书中所写的内容是最优的。那么我的代码的策略迭代肯定存在一些我看不到的问题。基本上,我应该如何解决这个政策?

4

1 回答 1

0

我想问题出在以下几行:

(1) value = self.action_prob * (reward + self.discount * state_values[next_i, next_j])
(2) new_state_values[i, j] = value

在这里,您直接分配仅从一项操作中获得的值。如果你看一下贝尔曼期望方程,所有动作的开始都有一个总和。您必须考虑一个状态的所有动作,对所有可能的动作进行计算(1),将它们相加并将(2)中的总和分配给 (i,j) 的新值。

于 2019-10-02T07:58:05.847 回答