3

我使用 glmer 来分析重复测量设计中的反应时间,其中包含 2 个固定因素(每个 3 个水平)和 1 个随机因素。由于我有一个重要的互动,我想做事后得到对比。我首先使用 relevel 来根据需要多次更改模型的参考,以获得我需要的对比度。我已经看到 glht 也可以使用(并避免重新调整),但我得到一些在查看数据时没有任何意义的 p 值。我尝试在 glht 之前重新调整我的一个因素,并且 p 值更有意义。我的对比度矩阵好吗?这是否意味着我还需要在 glht 中使用 relevel?任何人都可以帮助我吗?

我有一个实验,有 2 个重复的固定因子 Verb (vt,vnt,vnta) 和 Delay (170,350,500),而 Subjects 作为随机因子。在测量反应时间时,我按照 Lo & Andrews (2015) 的建议使用了 glmer(lme4 包)。模型的方差分析给出了 2 个固定因素之间的显着交互作用,我会进行事后测试。我首先使用 relevel 来更改模型的参考并测试所有需要的对比。我发现某些条件之间存在显着差异,但是我不确定是否对数据进行了任何更正。这是我的第一个问题。

我已经看到 glht(multcomp 包)也可以用于事后处理(并避免重新调整)。因此,我尝试了这个,但我不确定我是否做得很好,因为在查看数据时我得到了看起来非常奇怪的显着差异。当我在 glht 之前使用 relevel 时,我得到了一些更连贯的结果(以及与第一次 relevel 分析中类似的估计)。这是否意味着 glht 有时需要使用 relevel ?谁能帮我?

> m2b <- glmer(RT ~ Delai * Verbe + (1|Sujet), data = Data_Tacti2, family=Gamma(link="identity"), glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000))) 

> Anova(m2b)
Analysis of Deviance Table (Type II Wald chisquare tests)

    Response: RT
          Chisq Df Pr(>Chisq)    
Delai       677.379  2     <2e-16 ***
Verbe         3.562  2     0.1685    
Delai:Verbe  10.161  4     0.0378 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

型号参考 VNT 170

> summary(m2b)  

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: Gamma  ( identity )
Formula: RT ~ Delai * Verbe + (1 | Sujet)
   Data: Data_Tacti2
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

 AIC      BIC   logLik deviance df.resid 
 51151.3  51220.9 -25564.6  51129.3     4122 

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-3.3223 -0.6339 -0.1768  0.4510  6.8590 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Sujet    (Intercept) 836.62309 28.9244 
 Residual               0.08911  0.2985 
Number of obs: 4133, groups:  Sujet, 18

    Fixed effects:
                   Estimate Std. Error t value Pr(>|z|)    
(Intercept)         494.110      9.414  52.485  < 2e-16 ***
Delai350            -76.068      4.328 -17.576  < 2e-16 ***
Delai500            -93.102      4.313 -21.585  < 2e-16 ***
Verbevnta            -7.559      4.901  -1.542  0.12298    
Verbevt             -16.837      5.224  -3.223  0.00127 ** 
Delai350:Verbevnta    7.926      6.657   1.191  0.23379    
Delai500:Verbevnta    8.381      6.271   1.337  0.18136    
Delai350:Verbevt     19.670      7.014   2.804  0.00504 ** 
Delai500:Verbevt     10.198      5.624   1.813  0.06980 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) Del350 Del500 Vrbvnt Verbvt Dl350:Vrbvn Dl500:Vrbvn     Dl350:Vrbvt
Delai350    -0.262                                                                
Delai500    -0.212  0.381                                                         
Verbevnta   -0.232  0.206  0.139                                                  
Verbevt     -0.297  0.196  0.168  0.184                                           
Dl350:Vrbvn  0.209 -0.360 -0.019 -0.555  0.024                                    
Dl500:Vrbvn  0.280 -0.182 -0.439 -0.515 -0.051  0.351                             
Dl350:Vrbvt  0.297 -0.408 -0.066 -0.011 -0.576  0.101       0.038                 
Dl500:Vrbvt  0.195 -0.083 -0.350  0.052 -0.571 -0.106       0.131       0.406

重新调平至 VT 170

> Data_Tacti2$Delai <- relevel (Data_Tacti2$Delai, ref = "170")
> Data_Tacti2$Verbe <- relevel (Data_Tacti2$Verbe, ref = "vt") 

> m2b_vt_170 <- glmer(RT ~ Delai * Verbe + (1|Sujet), data = Data_Tacti2, family=Gamma(link="identity"), glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))

> summary(m2b_vt_170)
    Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: Gamma  ( identity )
Formula: RT ~ Delai * Verbe + (1 | Sujet)
   Data: Data_Tacti2
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

     AIC      BIC   logLik deviance df.resid 
 51151.3  51220.9 -25564.6  51129.3     4122 

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-3.3223 -0.6339 -0.1768  0.4510  6.8590 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Sujet    (Intercept) 836.63773 28.9247 
 Residual               0.08911  0.2985 
Number of obs: 4133, groups:  Sujet, 18

Fixed effects:
               Estimate Std. Error t value Pr(>|z|)    
(Intercept)         477.272      7.337  65.050  < 2e-16 ***
Delai350            -56.397      4.444 -12.692  < 2e-16 ***
Delai500            -82.904      4.670 -17.753  < 2e-16 ***
Verbevnt             16.838      4.189   4.019 5.83e-05 ***
Verbevnta             9.279      5.293   1.753  0.07962 .  
Delai350:Verbevnt   -19.671      5.984  -3.287  0.00101 ** 
Delai500:Verbevnt   -10.198      7.293  -1.398  0.16200    
Delai350:Verbevnta  -11.745      6.581  -1.785  0.07433 .  
Delai500:Verbevnta   -1.817      5.805  -0.313  0.75428    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                   (Intr) Del350 Del500 Verbevnt Verbevnta Delai350:Verbevnt     Delai500:Verbevnt Delai350:Verbevnta
Delai350           -0.114                                                                                        
Delai500           -0.015  0.276                                                                                 
Verbevnt            0.012 -0.010  0.108                                                                          
Verbevnta          -0.157  0.220  0.070  0.139                                                                   
Delai350:Verbevnt   0.006 -0.226  0.095 -0.420    0.091                                                          
Delai500:Verbevnt   0.003  0.107 -0.456 -0.438    0.152     0.183                                                
Delai350:Verbevnta  0.198 -0.428  0.006  0.101   -0.570     0.007            -0.177                              
Delai500:Verbevnta  0.062 -0.038 -0.332  0.043   -0.511    -0.173             0.100             0.342 

重新调平至 VNT 350

> Data_Tacti2$Delai <- relevel (Data_Tacti2$Delai, ref = "350")
> Data_Tacti2$Verbe <- relevel (Data_Tacti2$Verbe, ref = "vnt") 

> m2b_vnt_350 <- glmer(RT ~ Delai * Verbe + (1|Sujet), data = Data_Tacti2, family=Gamma(link="identity"), glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
> summary(m2b_vnt_350)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: Gamma  ( identity )
Formula: RT ~ Delai * Verbe + (1 | Sujet)
   Data: Data_Tacti2
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

     AIC      BIC   logLik deviance df.resid 
 51151.3  51220.9 -25564.6  51129.3     4122 

Scaled residuals: 
Min      1Q  Median      3Q     Max 
-3.3223 -0.6339 -0.1768  0.4510  6.8590 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Sujet    (Intercept) 836.62212 28.9244 
 Residual               0.08911  0.2985 
Number of obs: 4133, groups:  Sujet, 18

Fixed effects:
                   Estimate Std. Error t value Pr(>|z|)    
(Intercept)         420.875      7.076  59.478  < 2e-16 ***
Delai170             56.398      5.221  10.802  < 2e-16 ***
Delai500            -26.507      4.087  -6.486  8.8e-11 ***
Verbevnt             -2.833      4.184  -0.677 0.498329    
Verbevnta            -2.466      4.030  -0.612 0.540484    
Delai170:Verbevnt    19.671      5.219   3.769 0.000164 ***
Delai500:Verbevnt     9.473      5.672   1.670 0.094900 .  
Delai170:Verbevnta   11.745      5.454   2.153 0.031280 *  
Delai500:Verbevnta    9.928      5.097   1.948 0.051439 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                   (Intr) Del170 Del500 Verbevnt Verbevnta  Delai170:Verbevnt Delai500:Verbevnt Delai170:Verbevnta
Delai170            0.032                                                                                        
Delai500            0.107  0.225                                                                                 
Verbevnt           -0.022 -0.140  0.117                                                                          
Verbevnta          -0.010 -0.035  0.073  0.235                                                                   
Delai170:Verbevnt   0.041 -0.310 -0.045 -0.229    0.066                                                          
Delai500:Verbevnt  -0.096  0.200 -0.356 -0.468    0.029     0.137                                                
Delai170:Verbevnta -0.087 -0.438  0.037  0.181   -0.115     0.115            -0.189                              
Delai500:Verbevnta -0.105  0.094 -0.336 -0.045   -0.383    -0.039             0.184            -0.019    

我根据需要多次使用 relevel 来获得因子动词的 3 个级别和因子延迟的 3 个级别之间的所有对比(此处未报告)

现在使用 glht

型号 m2b,参考 VT 170

> contrast.matrix <- rbind(
+   `VNT170 vs VT170` = c(0, 0, 0, 0, 1, 0, 0, 0, 0),
+   `VNTA170 vs VT170` = c(0, 0, 0, -1, 1, 0, 0, 0, 0),
+   `VNT170 vs VNTA170` = c(0, 0, 0, 1, 0, 0, 0, 0, 0),
+   `VNT350 vs VT350` = c(0, 1, 0, 0, 0, 0, 0, -1, 0),
+   `VNTA350 vs VT350` = c(0, 0, 0, 0, 0, 1, 0, -1, 0),
+   `VNT350 vs VNTA350` = c(0, 1, 0, 0, 0, -1, 0, 0, 0),
+   `VNT500 vs VT500` = c(0, 0, 1, 0, 0, 0, 0, 0, -1),
+   `VNTA500 vs VT500` = c(0, 0, 0, 0, 0, 0, 1, 0, -1),
+   `VNT500 vs VNTA500` = c(0, 0, 1, 0, 0, 0, -1, 0, 0)
+ )

> comps_refVNT170 <- glht(m2b, contrast.matrix)
> summary(comps_refVNT170)

     Simultaneous Tests for General Linear Hypotheses

Fit: glmer(formula = RT ~ Delai * Verbe + (1 | Sujet), data = Data_Tacti2, 
family = Gamma(link = "identity"), control = glmerControl(optimizer = "bobyqa", 
    optCtrl = list(maxfun = 1e+05)))

Linear Hypotheses:
                       Estimate Std. Error z value Pr(>|z|)    
VNT170 vs VT170 == 0    -16.837      5.224  -3.223    0.010 *  
VNTA170 vs VT170 == 0    -9.278      6.472  -1.434    0.621    
VNT170 vs VNTA170 == 0   -7.559      4.901  -1.542    0.544    
VNT350 vs VT350 == 0    -95.738      9.629  -9.943   <0.001 ***
VNTA350 vs VT350 == 0   -11.744      9.171  -1.281    0.726    
VNT350 vs VNTA350 == 0  -83.994      9.152  -9.178   <0.001 ***
VNT500 vs VT500 == 0   -103.300      8.198 -12.601   <0.001 ***
VNTA500 vs VT500 == 0    -1.816      7.856  -0.231    1.000    
VNT500 vs VNTA500 == 0 -101.484      9.038 -11.228   <0.001 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)    

我得到对比 VNT350-VT350 的 p 值 <.001,这非常奇怪(查看数据时 VNT500-VT500 和 VNT500-VNTA500 相同),并且这种差异在第一次重新调平分析中并不显着

矩阵好吗?

如果我重新调整对 VNT 350 的 tp 参考(尽管我不应该这样做),则估计与第一次重新调整分析中的估计相似,并且 VNT350-VT350 的 p 值更有意义

这是否意味着我也需要为 glht 重新调平?

> Data_Tacti2$Delai <- relevel (Data_Tacti2$Delai, ref = "350") 
> Data_Tacti2$Verbe <- relevel (Data_Tacti2$Verbe, ref = "vnt") 
> m2b_vnt_350 <- glmer(RT ~ Delai * Verbe + (1|Sujet), data = Data_Tacti2, family=Gamma(link="identity"), glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 100000)))
> summary(m2b_vnt_350)
Generalized linear mixed model fit by maximum likelihood (Laplace  Approximation) ['glmerMod']
 Family: Gamma  ( identity )
Formula: RT ~ Delai * Verbe + (1 | Sujet)
   Data: Data_Tacti2
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

     AIC      BIC   logLik deviance df.resid 
 51151.3  51220.9 -25564.6  51129.3     4122 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.3223 -0.6339 -0.1768  0.4510  6.8590 

Random effects:
 Groups   Name        Variance  Std.Dev.
 Sujet    (Intercept) 836.62212 28.9244 
 Residual               0.08911  0.2985 
Number of obs: 4133, groups:  Sujet, 18

Fixed effects:
                   Estimate Std. Error t value Pr(>|z|)    
(Intercept)         420.875      7.076  59.478  < 2e-16 ***
Delai170             56.398      5.221  10.802  < 2e-16 ***
Delai500            -26.507      4.087  -6.486  8.8e-11 ***
Verbevnt             -2.833      4.184  -0.677 0.498329    
Verbevnta            -2.466      4.030  -0.612 0.540484    
Delai170:Verbevnt    19.671      5.219   3.769 0.000164 ***
Delai500:Verbevnt     9.473      5.672   1.670 0.094900 .  
Delai170:Verbevnta   11.745      5.454   2.153 0.031280 *  
Delai500:Verbevnta    9.928      5.097   1.948 0.051439 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
                   (Intr) Del170 Del500 Verbevnt Verbevnta Delai170:Verbevnt Delai500:Verbevnt Delai170:Verbevnta
Delai170            0.032                                                                                        
Delai500            0.107  0.225                                                                                 
Verbevnt           -0.022 -0.140  0.117                                                                          
Verbevnta          -0.010 -0.035  0.073  0.235                                                                   
Delai170:Verbevnt   0.041 -0.310 -0.045 -0.229    0.066                                                          
Delai500:Verbevnt  -0.096  0.200 -0.356 -0.468    0.029     0.137                                                
Delai170:Verbevnta -0.087 -0.438  0.037  0.181   -0.115     0.115            -0.189                              
Delai500:Verbevnta -0.105  0.094 -0.336 -0.045   -0.383    -0.039             0.184            -0.019   


> contrast.matrix2 <- rbind(
+   `VNT170 vs VT170` = c(0, 1, 0, 0, 0, 0, 0, -1, 0),
+   `VNTA170 vs VT170` = c(0, 0, 0, 0, 0, 1, 0, -1, 0),
+   `VNT170 vs VNTA170` = c(0, 1, 0, 0, 0, -1, 0, 0, 0),
+   `VNT350 vs VT350` = c(0, 0, 0, 0, 1, 0, 0, 0, 0),
+   `VNTA350 vs VT350` = c(0, 0, 0, 1, -1, 0, 0, 0, 0),
+   `VNT350 vs VNTA350` = c(0, 0, 0, 1, 0, 0, 0, 0, 0),
+   `VNT500 vs VT500` = c(0, 0, 1, 0, 0, 0, 0, 0, -1),
+   `VNTA500 vs VT500` = c(0, 0, 0, 0, 0, 0, 1, 0, -1),
+   `VNT500 vs VNTA500` = c(0, 0, 1, 0, 0, 0, -1, 0, 0)
+ )

> comps_refVNT350 <- glht(m2b_vnt_350, contrast.matrix2)
> summary(comps_refVNT350)

     Simultaneous Tests for General Linear Hypotheses

Fit: glmer(formula = RT ~ Delai * Verbe + (1 | Sujet), data = Data_Tacti2, 
family = Gamma(link = "identity"), control = glmerControl(optimizer = "bobyqa", 
    optCtrl = list(maxfun = 1e+05)))

Linear Hypotheses:
                       Estimate Std. Error z value Pr(>|z|)    
VNT170 vs VT170 == 0    44.6531     9.0536   4.932  < 1e-04 ***
VNTA170 vs VT170 == 0    7.9262     7.0999   1.116 0.858353    
VNT170 vs VNTA170 == 0  36.7269     8.4492   4.347 0.000132 ***
VNT350 vs VT350 == 0    -2.4665     4.0296  -0.612 0.991632    
VNTA350 vs VT350 == 0   -0.3665     5.0804  -0.072 1.000000    
VNT350 vs VNTA350 == 0  -2.8330     4.1839  -0.677 0.985839    
VNT500 vs VT500 == 0   -36.4355     7.5282  -4.840  < 1e-04 ***
VNTA500 vs VT500 == 0   -0.4557     6.8929  -0.066 1.000000    
VNT500 vs VNTA500 == 0 -35.9798     8.0848  -4.450  < 1e-04 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
4

0 回答 0