我想训练一个对隐藏层权重矩阵的列具有正交约束的神经网络,即学习的权重矩阵应该具有正交列。如何在 keras 中做到这一点?
1 回答
5
class WeightsOrthogonalityConstraint(tf.keras.constraints.Constraint):
def __init__(self, encoding_dim, weightage = 1.0, axis = 0):
self.encoding_dim = encoding_dim
self.weightage = weightage
self.axis = axis
def weights_orthogonality(self, w):
if(self.axis==1):
w = tf.keras.backend.transpose(w)
if(self.encoding_dim > 1):
m = tf.keras.backend.dot(tf.keras.backend.transpose(w), tf.Variable(w)) - tf.keras.backend.eye(self.encoding_dim)
return self.weightage * tf.keras.backend.sqrt(tf.keras.backend.sum(tf.keras.backend.square(m)))
else:
m = tf.keras.backend.sum(w ** 2) - 1.
return m
def __call__(self, w):
return self.weights_orthogonality(w)
用法:
x = tf.keras.layers.Dense(2, 'relu', input_shape=(4,), kernel_regularizer=WeightsOrthogonalityConstraint(2))
于 2019-09-07T22:03:39.863 回答